Методы и алгоритмы построения элементов систем статистического моделирования
Категория реферата: Рефераты по математике
Теги реферата: изложение, решебник по русскому
Добавил(а) на сайт: Artem'ev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
(14)
Тогда любое из уравнений в (8.14) можно исключить.
Так же, как и в случае поглощения ДМЦ многие характеристики эргодических цепей определяются с помощью фундаментальной матрицы, которая в этом случае будет иметь вид:
(15)
Для эргодических цепей характеристикой, имеющей важное практическое значение, является продолжительность времени, за которое процесс из состояния впервые попадает в , так называемое время первого достижения. Матрица средних времен достижения определяется по формуле:
(16)
где
- фундаментальная матрица (15);
- диагональная матрица, образованная из фундаментальной заменой всех элементов, кроме диагональных, нулями;
D - диагональная матрица с диагональными элементами, ;
Е - матрица, все элементы которой равны единице.
Матрица дисперсий времени первого достижения имеет несколько более сложный вид:
(17)
где кроме уже упомянутых обозначений встречается новое - (, обозначающее диагональную матрицу, полученную из матричного произведения матриц .
4.3. Управляемые марковские цепиКак указывалось выше, под управляемыми марковскими процессами понимают такие, у которых имеется возможность до определенной степени управлять значениями переходных вероятностей. В качестве примеров таких процессов можно привести любые торговые операции, у которых вероятность сбыта и получения эффекта может зависеть от рекламы, мероприятий по улучшению качества, выбора покупателя или рынка сбыта и т.д.
Очевидно, что при создании математических моделей в данном случае должны фигурировать следующие компоненты:
конечное множество решений (альтернатив) , где - номер состояния системы; матрицы переходов соответствующие тому или иному принятому k-му решению; матрицы доходов (расходов) , также отражающие эффективность данного решения.Управляемой цепью Маркова (УЦМ) называется случайный процесс, обладающий марковским свойством и включающий в качестве элемента математической модели конструкцию (кортеж) . Решение, принимаемое в каждый конкретный момент (шаг процесса), назовем частным управлением.
Таким образом, процесс функционирования системы, описываемой УЦМ, выглядит следующим образом:
если система находится в состоянии и принимается решение , то она получает доход ; состояние системы в последующий момент времени (шаг) определяется вероятностью , то есть существует вероятность того, что система из состояния перейдет в состояние , если выбрано решение .Очевидно, общий доход за n шагов является случайной величиной, зависящей от начального состояния и качества принимаемых в течение хода процесса решений, причем это качество оценивается величиной среднего суммарного дохода (при конечном времени) или среднего дохода за единицу времени (при бесконечном времени).
Стратегией p называется последовательность решений:
(18)
где
- вектор управления.
Задание стратегии означает полное описание конкретных решений, принимаемых на всех шагах процесса в зависимости от состояния, в котором находится в этот момент процесс.
Если в последовательности (векторе) p все одинаковы, то такая стратегия называется стационарной, т.е. не зависящей от номера шага. Стратегия называется марковской, если решение , принимаемое в каждом конкретном состоянии, зависит только от момента времени n, но не зависит от предшествующих состояний.
Рекомендуем скачать другие рефераты по теме: налоги в россии, бесплатные тесты бесплатно.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата