Настоящая теория чисел
Категория реферата: Рефераты по математике
Теги реферата: экзамен, задачи курсовой работы
Добавил(а) на сайт: Mariam.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата
Например. Используя принцип 5.3.2. для Z( |5 * 5) при n = 2, d = 3 мы получим цикл натуральных корней
_____ _____
Z( |2 * 7), где 7 = |5 * 2.
5.3.3. Суммы числовых рядов Нижеизложенные принципы являются прямым следствием принципа циклов натуральных корней и, соответственно, принципа эманационного построения числового ряда.
Cумма членов арифметической прогрессии с постоянной дельтой d от любой эманации числа х до любой эманации числа у является постоянной величиной по натуральному корню.
Например. Найдем сумму членов арифметической прогрессии с дельтой d = 1 и первым членом а = 1 от эманаций 1-цы до эманаций 2-ки: ___ ____
Сумма членов от 1 до 2 равна 3, от 1 до 11 равна 3|66, от 10 до 20 равна 3|165, т.е. в любом из этих случаев сумма по натуральному корню равна числу 3.
При рассмотрении сумм членов числовых последовательностей с переменной дельтой d = а,b,с...n от эманаций числа х до эма наций числа у мы найдем, что они не являются постоянными величинами по натуральному корню, но при построении в числовой ряд они представляют из себя цикл натуральных
_____
корней Z( |f + k), где k - натуральный корень суммы членов цикла натуральных корней, который мы получаем путем извлечения натуральных корней из членов данной числовой последовательности. Например. Рассмотрим цикл натуральных корней с переменной дельтой d = 2,7 и первым членом 1. Он будет иметь вид 1,3,1,3,1,3,1,3 и т.д. В данном случае натуральные корни сумм членов от 1до 1 выстроятся в числовой ряд 5,9,4,8,3,7,2,6,1, т.е.
______
цикл натуральных корней Z( |6 + 4), где число 4 является суммой членов цикла натуральных корней с переменной дельтой, т.е. 4 = 1 + 3.
Суммы членов арифметической прогрессии с некоторой постоянной дельтой d от некоторого числа а до чисел, являющихся членами некоторого цикла натуральных корней, представляют из себя члены некоторого цикла натуральных корней при извлечении из них натуральных корней.
Например, рассмотрим арифметическую прогрессию с дельтой d = 2 и первым членом 1: 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37, т.е. цикл натуральных корней 1,3,5,7,9,2,4,6,8. Рассмотрим суммы от числа 1 до чле- нов прогрессии, которые по натуральному корню являются членами цикла натуральных корней 5,2,8:
Сумма от 1 до 5 = 9,
___
от 1 до 11 = 9|36,
___
от 1 до 17 = 9|81,
____
от 1 до 23 = 9|144. _____
Т.е., мы получили цикл натуральных корней Z( |0 + 9).
РАЗДЕЛ 6
СТЕПЕННЫЕ РЯДЫ
6.1. При возведении числа х, имеющего натуральный корень z, в степени, имеющие одинаковый натуральный корень, мы получаем числа, равные по натуральному корню.
Для чисел с натуральным корнем 1,4,7 данное правило всегда верно. Например, возведем число 4 в степени, имеющие натуральный корень2 - степени 2 и11:
2 ___ 11 ________
4 = 7|16, 4 = 7|4194304. Мы получили числа, равные по натуральному корню.
Для чисел с натуральным корнем 2,5,8 данное правило верно, если степени, равные по натуральному корню являются либо только четными, либо только нечетными числами.
Так, при возведении числа 2 в степени, имеющие натуральный корень 2 и являющиеся четными числами, мы получим числа, натуральный корень которых равен 4, при возведении же в степени, также имеющие натуральный корень 2, но являющиеся нечетными числами, мы получим числа, натуральный корень которых равен 5, т.е. числа противоположные числу 4.
Например.
2 20 ________
2 = 4, 2 = 4|1048576 ;
11 ______ 29 __________
2 = 5|2048, 2 = 5|536870912
Если число 8 в четной степени с натуральным корнем 2 даст нам число с натуральным корнем 1, то в нечетной степени число с натуральным корнем 8, т.е. число, противоположное числу 1.
Числа с натуральным корнем 3 и 6 при возведении в любую степень, кроме 1-й, дают числа, натуральный корень которых равен числу 9.
Числа с натуральным корнем 9 при возведении в любую степень дают числа, натуральный корень которых равен числу 9.
6.2. При возведении числа х в степени, являющиеся членами некоторого цикла натуральных корней, получаемые числа также являются членами некоторого цикла натуральных корней.
Например. Возведем число 2 в степени - члены арифметической прогрессии с дельтой d = 2:
1 3 5 ___ 7 ____ 9 ____
2 = 2, 2 = 8, 2 = 5|32, 2 = 2|128, 2 = 8|512. _____ _____
Мы получили цикл натуральных корней 2,8,5, т.е. Z (|5 + 6), или Z( |5 * 4).
Естественно, что при выполнении данного действия и других действий со степенями, необходимо учитывать особенности поведения чисел, имеющих натуральный корень 2,5,8 и 3,6,9.
6.3. При возведении в степени, являющиеся членами цикла натуральных корней, чисел, являющихся членами цикла натуральных корней, мы получаем числа, которые также являются членами некоторого цикла натуральных корней.
_____
Например. Возведем в степени, члены цикла Z( |2 + 9) члены
_____
цикла натуральных корней сложения Z( |8 + 2):
2 2 2 ___ 2 ___ 2 ____ 2 2 ___ 2 ___ 2 ___
Рекомендуем скачать другие рефераты по теме: реферат народы, шпаргалки по государству и праву.
Предыдущая страница реферата | 16 17 18 19 20 21 22 23 24 25 26 | Следующая страница реферата