Рефераты | Рефераты по математике | Построение экономической модели с использованием симплекс-метода | страница реферата 5 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • S2, X2

    S1, X1

    В

    S1, X2

    S2, X1

    Применяя аналогичную процедуру ко всем экстремальным точкам рис. 1, можно убедиться в том, что любую последующую экстремальную точку всегда можно определить путем взаимной замены по одной переменной в составе базисных и небазисных переменных ( предыдущей смежной точки ). Этот фактор существенно упрощает реализацию вычислительных процедур симплекс-метода.

    Рассмотренный процесс взаимной замены переменных приводит к необходимости введения двух новых терминов. Включаемой переменной называется небазисная в данный момент переменная, которая будет включена в множество базисных переменных на следующей итерации ( при переходе к смежной экстремальной точке ). Исключаемая переменная — это та базисная переменная, которая на следующей итерации подлежит исключению из множества базисных переменных.

    Вычислительные процедуры симплекс-метода.

    симплекс-алгоритм состоит из следующих шагов.

    Шаг 0. Используя линейную модель стандартной формы, определяют начальное допустимое базисное решение путем приравнивания к нулю п — т ( небазисных ) переменных.

    Шаг 1. Из числа текущих небазисных ( равных нулю ) переменных выбирается включаемая в новый базис переменная, увеличение которой обеспечивает улучшение значения целевой функции. Если такой переменной нет, вычисления прекращаются, так как текущее базисное решение оптимально. В противном случае осуществляется переход к шагу 2.

    Шаг 2. Из числа переменных текущего базиса выбирается исключаемая переменная, которая должна принять нулевое значение ( стать небазисной ) при введении в состав базисных новой переменной.

    Шаг 3. Находится новое базисное решение, соответствующее новым составам небазисных и базисных переменных. Осуществляется переход к шагу 1.

    Поясним процедуры симплекс-метода на примере решения нашей задачи. Сначала необходимо представить целевую функцию и ограничения модели в стандартной форме:

     Z X1 25X2 +0S1 -0S2 = 0 ( Целевая функция )

    5X1 + 100X2 + S1  = 1000 ( Ограничение )

    -X1 + 2X2  + S2 = 0 ( Ограничение )

    Как отмечалось ранее, в качестве начального пробного решения используется решение системы уравнений, в которой две переменные принимаются равными нулю. Это обеспечивает единственность и допустимость получаемого решения. В рассматриваемом случае очевидно, что подстановка X1 = X2 = 0 сразу же приводит к следующему результату: S1 = 1000, S2 = 0 ( т. е. решению, соответствующему точке А на рис. 1 ). Поэтому точку А можно использовать как начальное допустимое решение. Величина Z в этой точке равна нулю, так как и X1 и X2 имеют нулевое значение. Поэтому, преобразовав уравнение целевой функции так, чтобы его правая часть стала равной нулю, можно убедиться в том, что правые части уравнений целевой функции и ограничений полностью характеризуют начальное решение. Это имеет место во всех случаях, когда начальный базис состоит из остаточных переменных. 

    Полученные результаты удобно представить в виде таблицы :

    Базисные переменные

    Z

    X1

    X2

    S1

    S2


    Рекомендуем скачать другие рефераты по теме: мировая война реферат, конспект урока 3.



    Предыдущая страница реферата | 1  2  3  4  5  6  7  8  9  10  11 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •