Рефераты | Рефераты по математике | Построение экономической модели с использованием симплекс-метода | страница реферата 7 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • Эта таблица интерпретируется следующим образом. Столбец « Базисные переменные » содержит переменные пробного базиса S1, S2, значения которых приведены в столбце « Решение ». При этом подразумевается, что небазисные переменные X1 и X2 ( не представленные в первом столбце ) равны нулю. Значение целевой функции Z = 1*0 + 25*0 + 0*1000 + 0*1 равно нулю, что и показано в последнем столбце таблицы.

    Определим, является ли полученное пробное решение наилучшим ( оптимальным ). Анализируя Z уравнение, нетрудно заметить, что обе небазисные переменные X1 и X2, равные нулю, имеют отрицательные коэффициенты. Всегда выбирается переменная с большим абсолютным значением отрицательного коэффициента ( в Z уравнении ), так как практический опыт вычислений показывает, что в этом случае оптимум достигается быстрее.

    Это правило составляет основу используемого в вычислительной схеме симплекс-метода условия оптимальности, которое состоит в том, что, если в задаче максимизации все небазисные переменные в Z уравнении имеют неотрицательные коэффициенты, полученное пробное решение является оптимальным. В противном случае в качестве новой базисной переменной следует выбрать ту, которая имеет наибольший по абсолютной величине отрицательный коэффициент.

    Применяя условие оптимальности к исходной таблице, выберем в качестве переменной, включаемой в базис, переменную Х2. Исключаемая переменная должна быть выбрана из совокупности базисных переменных S1, S2. Процедура выбора исключаемой переменной предполагает проверку условия допустимости, требующего, чтобы в качестве исключаемой переменной выбиралась та из переменных текущего базиса, которая первой обращается в нуль при увеличении включаемой переменной X2 вплоть до значения, соответствующего смежной экстремальной точке.

    Интересующее нас отношение ( фиксирующее искомую точку пе-ресечения и идентифицирующее исключаемую переменную ) можно определить из симплекс-таблицы. Для этого в столбце, соответствующем вводимой переменной X2, вычеркиваются отрицательные и нулевые элементы ограничений. Затем вычисляются отношения постоянных, фигурирующих в правых частях этих ограничений, к оставшимся элементам столбца, соответствующего вводимой переменной X2. Исключаемой переменной будет та переменная текущего базиса, для которой указанное выше отношение минимально.

    Начальная симплекс-таблица для нашей задачи, получаемая после проверки условия допустимости ( т. е. после вычисления соответствующих отношений и определения исключаемой переменной ), воспроизведена ниже. Для удобства описания вычислительных процедур, осуществляемых на следующей итерации, введем ряд необходимых определений. Столбец симплекс-таблицы, ассоциированный с вводимой переменной, будем называть ведущим столбцом. Строку, соответствующую исключаемой переменной, назовем ведущей строкой ( уравнением ), а элемент таблицы, находящийся на пересечении ведущего столбца и ведущей строки, будем называть ведущим элементом.

    После того как определены включаемая и исключаемая переменные ( с использованием условий оптимальности и допустимости ), следующая итерация ( поиск нового базисного решения ) осуществляется методом исключения переменных, или методом Гаусса — Жордана. Этот процесс изменения базиса включает вычислительные процедуры двух типов.

    Тип 1 ( формирование ведущего уравнения ).

    Новая ведущая строка = Предыдущая ведущая строка / Ведущий элемент

    Тип 2 ( формирование всех остальных уравнений, включая Z yравнение ).

    Новое уравнение = Предыдущее уравнение —

     Коэффициент 

     ведущего столбца Новая ведущая строка ).

    предыдущего  

    уравнения  

    Выполнение процедуры типа 1 приводит к тому, что в новом ведущем уравнении ведущий элемент становится равным единице. В результате осуществления процедуры типа 2 все остальные коэффициенты, фигурирующие в ведущем столбце, становятся равными нулю. Это эквивалентно получению базисного решения путем исключения вводимой переменной из всех уравнений, кроме ведущего. Применяя к исходной таблице процедуру 1, мы делим S2 уравнение на ведущий элемент, равный 1.

    Базисные переменные

    Z

    X1

    X2

    S1

    S2

    Решение

    Z

    S1


    Рекомендуем скачать другие рефераты по теме: мировая война реферат, конспект урока 3.



    Предыдущая страница реферата | 2  3  4  5  6  7  8  9  10  11  12 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •