Применение графиков в решении уравнений
Категория реферата: Рефераты по математике
Теги реферата: 5 баллов рефераты, реферат на тему информация
Добавил(а) на сайт: Sola.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
3. Решить уравнение: x2-2x+1=0
Рисунок 3.
Если аккуратно начертить параболу у=х2 и прямую у=2х-1, то увидим, что они имеют одну общую
точку(прямая касается параболы, см. рисунок 3), х=1, у=1;уравнение имеет один корень х=1(обязательно проверить это вычислением).
II) Системы уравнений.
Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство. Графики уравнений с двумя переменными весьма разнообразны. Например, графиком уравнения 2х+3у=15 является прямая, уравнения у=0.5х2 –2 –парабола, уравнения х2 +у2=4 – окружность, и т.д..
Степень целого уравнения с двумя переменными определяется так же, как и степень целого уравнения с одной переменной. Если левая часть уравнения с двумя переменными представляет собой многочлен стандартного вида, а правая число 0, то степень уравнения считают равной степени многочлена. Для того чтобы выяснить, какова степень какого-либо уравнения с двумя переменными, его заменяют равносильным уравнением, левая часть которого – многочлен стандартного вида, а правая- нуль. Рассмотрим графический способ решения.
Пример1:решить систему ⌠ x2 +y2 =25 (1)
⌠y=-x2+2x+5 (2)
Построим в одной системе координат графики уравнений(Рисунок4):
Построим в одной системе координат графи)
х2 +у2=25 и у=-х2+2х+5
Координаты любой точки построенной окружности являются решением уравнения 1, а координаты любой точки параболы являются решением уравнения 2. Значит, координаты каждой из точек пересечения окружности и параболы удовлетворяют как первому уравнению системы, так и второму, т.е. являются решением рассматриваемой системы. Используя рисунок, находим приближённые значения координат точек пересечения графиков: А(-2,2; -4,5), В(0;5), С(2,2;4,5), D(4;-3).Следовательно, система уравнений имеет четыре решения:
х1≈-2,2 , у1≈-4,5; х2≈0, у2≈5;
х3≈2,2 , у3≈4,5; х4≈4, у4≈-3.
Подставив найденные значения в уравнения системы, можно убедиться, что второе и четвёртое из этих решений являются точными, а первое и третье – приближёнными.
III)Тригонометрические уравнения:
Тригонометрические уравнения решают как аналитически, так и графически. Рассмотрим графический способ решения на примере.
Рисунок5.
Пример1:sinx+cosx=1. Построим графики функций y=sinx u y=1-cosx.(рисунок 5)
Из графика видно, что уравнение имеет 2 решения: х=2πп,где пЄZ и х=π/2+2πk,где kЄZ(Обязательно проверить
это вычислениями). Рисунок 6.
Пример2:Решить уравнение:tg2x+tgx=0. Решать это уравнение будем по принципу решения
предыдущего. Сначала построим графики(См. рисунок 6)функций: y=tg2x u y=-tgx. По графику видно что уравнение имеет 2
решения: х=πп, пЄZ u x=2πk/3, где kЄZ.(Проверить это вычислениями)
Применение графиков в решении неравенств.
1)Неравенства с модулем.
Пример1.
Решить неравенство |x-1|+|x+1|<4.
Рекомендуем скачать другие рефераты по теме: сочинение на тему онегин, решебник по русскому.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата