Радиационные пояса
Категория реферата: Рефераты по математике
Теги реферата: антикризисное управление предприятием, лечение пяточной шпори
Добавил(а) на сайт: Якин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Наблюдается запаздывание в появлении более энергичных электронов. Это хорошо соответствует более ранним результатам исследования инжекции электронов во время бурь (Williams et al., 1968). В дальнейшем может сформироваться максимум в спектре электронов внешнего пояса в области энергий 1 – 3 МэВ (Вакулов и др., 1975, West et al., 1981).
Буря 6 ноября 2001 г. Для бури 6 ноября (Tverskaya et al., 2005; Кузнецов и др., 2006) имеются данные по условиям в межпланетном пространстве. Буря была вызвана КВМ, эжектированным солнечной вспышкой 4 ноября в 16 ч. 20 м.
На рис. 17 (Кузнецов и др., 2006) на верхней панели приведены данные о положении лобовой точки магнитопаузы, вычисленные по модели (Кузнецов и др., 1998), и измеренная на ИСЗ КОРОНАС-Ф граница проникновения электронов солнечных энергичных частиц (СЭЧ) с Ее=0.3-0.6 МэВ с ночной стороны. В основном – это внутренняя граница плазменного слоя. Иногда мы видим резкое увеличение L границы проникновения электронов, возможно в это время происходит диполизация магнитного поля в хвосте магнитосферы. На средней панели представлены Bz и Р, индексы, определяющие размеры магнитосферы и магнитные возмущения. На нижней панели представлены Hsym - минутный аналог Dst вариации и АЕ – индекс авроральной активности.
Внезапное начало магнитной бури наблюдалось 6 ноября в 1 ч 52 м. Через несколько минут началась главная фаза бури, которая длилась около полутора часов. Магнитосфера в это время имела минимальные размеры, X(0) ~ 4Rз. При возрастании Bz и сохранении Р на одном уровне X(0) ~ 6Rз. В это время около 5 часов Hsym практически не изменялось. Именно в это время было измерено состояние пояса (см. рис.18 пунктир). Мы видим, что поток электронов всех энергий во внешнем поясе резко уменьшился по сравнению с потоками, измеренными 5 ноября. К сожалению, фоновый поток протонов СЭЧ в каналах электронов 0.6-1.5. 1.5-3, 3-6 МэВ мешает точно определить масштаб вариации. Для электронов 0.3-0.6 МэВ профиль пояса сместился на меньшие L по сравнению с профилем, полученным 5 ноября, и поток электронов уменьшился.
Отметим, что новый максимум пояса совпадает с минимальным значением L, которого достигала граница проникновения солнечных электронов при Hsym< -300 нТл. На следующий день пояс с максимумом на L~3 начал формироваться и для электронов более высоких энергий. Аналогичная картина инжекции наблюдалась и на больших высотах (Тverskaya et al., 2005). В дальнейшем на L~3 снова формируется зазор между поясами для электронов 0.3-0.6 МэВ.
Для обеих бурь значение Lmax близко к тому, что дает эмпирическая зависимость Lmax от максимальной амплитуды Dst вариации бури (Тверская, 1986).
3.7 Зависимость положения максимума пояса инжектированных во время магнитных бурь релятивистских электронов от мощности бури
Впервые зависимость положения максимума пояса релятивистских электронов, инжектированных во время магнитных бурь (Lmax), от мощности магнитной бури, определяемой амплитудой Dst-вариации, изучалась в (Williams et al., 1968). Авторы рассматривали бури в интервале амплитуд Dst=30–140 нТл и получили линейную зависимость Lmax(Dst). Однако, исследования c привлечением данных по более сильным бурям (вплоть до |Dst|max ~ 400 нТл), показали, что зависимость существенно нелинейна и имеет вид (Тверская, 1986):
3.2.23
На рис. 19 приводится зависимость Lmax от |Dst|max, построенная во всем диапазоне известных амплитуд магнитных бурь, включая самую сильную бурю за всю историю космических исследований – 13-14 марта 1989 г. (Tverskaya et al., 2005). Видно, что новые данные многочисленных спутников на больших и малых высотах хорошо соответствуют зависимости (3.2.23).
В соответствии с теоретическими представлениями (Tverskoy, 1972, 1982, 1997) и экспериментальными данными (Тверская, 1998; Tverskaya et al., 2005) формула (3.2.23) может определять (с точностью не хуже, чем первые десятые доли L), до каких L- оболочек в ночной магнитосфере смещаются в максимуме бури многие плазменные структуры: граница области захваченной радиации, максимум давления плазмы кольцевого тока, экваториальная граница овала полярных сияний, центр западной электроструи, граница проникновения солнечных космических лучей. Поэтому рассматриваемая зависимость может быть эффективно использована для предсказания космической погоды.
Вопрос о механизме ускорения релятивистских электронов во время магнитных бурь остается открытым. Электроны с энергиями в десятки – первые сотни кэВ (так называемые “seed” электроны) легко могут быть ускорены нестационарными электрическими полями суббурь (Бондарева и Тверская, 1973; Li et al., 1998). Электроны больших энергий могут ускоряться в процессе диполизации магнитного поля при втягивании силовых линий геомагнитного хвоста в область захваченной радиации во время суббурь (Tverskoy, 1969). Поскольку электроны инжектируются в поле, ослабленное кольцевым током, на фазе восстановления бури они испытывают дополнительное ускорение (Вакулов и др., 1975).
В последние годы предложено несколько механизмов ускорения электронов до релятивистских энергий на основе взаимодействия волна-частица (Summers and Ma, 2000; Бахарева, 2003 и соответствующие ссылки). Однако большинство этих механизмов ускоряют электроны до релятивистских энергий за время порядка нескольких часов и даже дней. В то же время эксперимент показывает, что ускорение электронов до релятивистских энергий может происходить даже в сердцевине внешнего радиационного пояса на временной шкале ~1 ч (Тверская, 1998; Li et al., 1999).
Достаточно подробный обзор разрабатываемых в последние годы механизмов ускорения электронов радиационных поясов можно найти в (Friedel et al., 2002).
4 потоки энергичных частиц под радиационными поясами земли
На рис. .3 (из раздела 1.3) приведены карты распределения различных частиц в поясах на высоте около 500 км. Для электронов с Ее=0.3-0.6 МэВ выбрана минимальная интенсивность 10 частиц/см2сср. Хорошо видны области внутреннего пояса, внешнего пояса и область высыпания из внешнего пояса на северных и южных широтах вокруг всей Земли. Характерной особенностью распределения энергичных электронов на малых высотах является наличие долготной зависимости их интенсивности вдоль траектории дрейфа. При одних и тех же параметрах L и В интенсивность электронов на долготах к западу от аномалии больше, чем к востоку (Вернов и др., 1963).
На более низких широтах, чем область высыпания из внешнего пояса, также существуют потоки квазизахваченных частиц, генетически связанных с радиационными поясами. На рис.20 приведены данные пролета ИСЗ КОРОНАС-И с севера на юг на L<8. В северном полушарии видно два пика потоков электронов, соответствующие внешнему поясу (L~4-5) и внешней кромке внутреннего пояса (L~2.1-2.3). В южном полушарии наблюдаются дополнительные пики на L~1.3 и L~1.6. Также заметно некоторое возрастание потоков протонов на экваторе, на промежуточных L и вблизи внешней границы внешнего пояса. Анализ данных, полученных на других орбитах, показывает, что возрастания потоков протонов на экваторе и на L~3.5 и 4.5 повторяются.
На рис. 21 (Bashkirov et al., 1999) приведено географическое распределение потоков электронов. Все области квазизахваченных электронов хорошо разделяются. В северном полушарии в области долгот от -70° до +50° потоки электронов на L~2.1 и 1.6 практически отсутствуют. Это – область, сопряженная Бразильской аномалии.
Исходя из разницы магнитного поля в Бразильской аномалии и сопряженной точке на высоте полета спутника, можно определить, что рассеяние электронов на полукачке на L~2.1 и 1.6 меньше 4- 6°. Интересно, что если на L~2.1 и 1.3 пики электронов регистрируются в любое мировое время, то на L~1.6 они регистрируются только с 10 до 24 ч UT (см. рис. 22).
Иногда во внешнем поясе в районах северного полушария, сопряженных с Южно-Aтлантической аномалией, где зеркальные точки опускаются ниже 50 км или уходят под Землю, регистрируются заметные потоки энергичных электронов. Это, скорее всего, связано с рассеянием частиц за один качек при движении между точками отражения (Вернов и др., 1965).
На L<2 квазизахваченные электроны регистрировались в ряде экспериментов. На существование потоков электронов на L~1.6 было указано в работе (Nagata et al., 1988). В работах (Imhof et al., 1984, Imhof et al., 1995) исследовалось высыпание электронов, вызванное взаимодействием с излучением низкочастотных радиостанций.
Зарегистрированы случаи появления в районе экватора протонов с Ер~70 кэВ (Бутенко, 1975) и 1-4.5 МэВ (Bashkirov, 1999). Исследования этого эффекта проводились и ранее (Hovestadt et al., 1972; Гоцелюк и др., 1974; Greenspan et al, 1999; Grachev et al., 2002). В работе (Гоцелюк и др., 2005) более детально изучалось распределение протонов под поясами. На рис. 23 приведено распределение протонов вблизи экватора. Видно, что они регистрируются на L<1.1, то есть существуют менее одного периода дрейфа вокруг Земли. Их источником считаются протоны радиационного пояса на L~2.5–4. Эти протоны захватывают электроны экзосферы и уже не удерживаются магнитным полем. Часть их, достигая атмосферы Земли на высоте ~ 200 км в экваторе, обдираются и, если они имеют питч-угол ~ 90°, захватываются магнитным полем. В работе выделены еще две области регистрации квазизахваченных протонов. Это – 3<L<4 и L>4. Область квазизахваченных протонов на 3<L<4 существует из-за паразитного рассеяния протонов на циклотронном излучении электронов (Гоцелюк и др., 1985). Неясно, чем объяснить высыпание протонов на L>4.
Список литературы
Альвен Г., Фельтхаммер К., Космическая электродинамика, основные принципы, М.: Мир, 1967.
Андронов А.А., Трахтенгерц В.Ю., Кинетическая неустойчивость радиационных поясов Земли, Геомагнетизм и аэрономия, Т. 4, с. 181-185, 1964.
Бахарева М.Ф., Нестационарное статистическое ускорение релятивистских частиц и его роль во время геомагнитных бурь, Геомагнетизм и аэрономия, Т. 43, № 6, с. 737–744, 2003.
Безродных И.П., Бережко Е.Г., Морозова Е.И. и др., Всплески энергичных электронов на магнитопаузе и во внешнем радиационном поясе, Геомагнетизм и аэрономия, Т. 24, с. 818- 830, 1984.
Рекомендуем скачать другие рефераты по теме: диплом государственного образца, реферат образование.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата