Решение иррациональных уравнений
Категория реферата: Рефераты по математике
Теги реферата: культурология как наука, оформление доклада титульный лист
Добавил(а) на сайт: Leonidov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
При непосредственном возведении в квадрат обеих частей уравнения уравнение должно быть сначала преобразовано так, чтобы в одной части стояли только радикалы, а в другой – остальные члены исходного уравнения. Так поступают, если радикалов в уравнении два. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования (приведение подобных и т.п.). Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал (теперь он будет только один!) – в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.
Пример. Введение новой переменной:
.
Решение: Обозначим , тогда
Уравнение примет вид:
Возведём его в квадрат:
Это уравнение так же возводим в квадрат:
Проверка: полученные значения t мы должны проверить в уравнении (1), так как именно оно возводилось в квадрат. Проверка показывает, что - посторонний корень, а - действительно корень уравнения (1). Отсюда получим:
Ответ: 0;-1.
Уравнения с радикалом третьей степени.
При решении уравнений, содержащих радикалы 3-й степени, бывает полезно пользоваться сложением тождествами:
Пример 1.
.
Возведём обе части этого уравнения в 3-ю степень и воспользуемся выше приведённым тождеством:
Заметим, что выражение стоящее в скобках равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим:
Раскроем скобки, приведём подобные члены и решим квадратное уравнение. Его корни и . Если считать (по определению), что корень нечётной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения.
Ответ: .
Решение 2
Рекомендуем скачать другие рефераты по теме: реферат на тему рынок, курсовые.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата