Решение систем линейных алгебраических уравнений
Категория реферата: Рефераты по математике
Теги реферата: bestreferat ru, инновационный менеджмент
Добавил(а) на сайт: Розанов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
(условие доминированния диагонали).
Метод Зейделя иногда называют также методом Гаусса-Зейделя, процессом Либмана, методом последовательных замещений.
1.3. Сравнение прямых и итерационных методов
Системы линейных алгебраических уравнений можно решать как с помощью прямых, так и и итерационных методов. Для систем уравнений средней размерности чаще использют прямые методы.
Итерационные методы применяют главным образом для решения задач большой размерности, когда использование прямых методов невозможно из-за ограниченииий в доступной оперативной памяти ЭВМ или из-за необходимости выполнения черезмерно большого числа арифметических операций. Большие системы уравнений, возникающие в основном в приложениях, как правило являются разреженными. Методы исключения для систем с разреженным и матрицами неудобны, например, тем, что при их использовании большое число нулевых элементов превращается в ненулевые и матрица теряет свойство разреженности. В противоположность им при использованнии итерационных методов в ходе итерационного процесса матрица не меняется, и она, естественно, остается разреженной. Большая эффективность итерационных методов по сравнению с прямыми методами тесно связанна с возможностью существенного использования разреженности матриц.
Применение итерационных методов для качественного решения большой системы уравнений требует серьезного использования ее структуры, специальных знаний и определенного опыта.
2. Практическая часть
2.1 Программа решения систем линейных уравнений по методу Гаусса
2.1.1. Постановка задачи. Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида
a11x1 + a12x2 + … + a1nxn = b1 ,
a21x2 + a22x2 + … + a2nxn = b2
,
. . . .
. . . . .
. . . .
an1x1 + an2x2 + … + annxn = bn
для n ≤ 10 по методу Гаусса.
2.1.2. Тестовый пример.
3,2x1 + 5,4x2 + 4,2x3 + 2,2x4 = 2,6 ,
2,1x1 + 3,2x2 + 3,1x3 + 1,1x4 = 4,8 ,
1,2x1 + 0,4x2 – 0,8x3 – 0,8x4 = 3,6 ,
4,7x1 + 10,4x2 + 9,7x3 + 9,7x4 = –8,4 ,
x1 = 5, x2 = –4, x3 = 3, x4 = –2.
2.1.3. Описание алгоритма. В данной программе реализован метод Гаусса со схемой частичного выбора.
В переменную n вводится порядок матрицы системы. С помощью вспомогательной процедуры ReadSystem в двумерный массив a и одномерный массив b вводится c клавиатуры расширенная матрица системы, после чего оба массива и переменная n передаются функции Gauss. В фукции Gauss для каждого k-го шага вычислений выполняется поиск максимального элемента в k-м столбце матрицы начинаяя с k-й строки. Номер строки, содержащей максимальный элемент сохраняеется в переменной l. В том случае если максимальный элемент находится не в k-й строке, строки с номерами k и l меняются местами. Если же все эти элементы равны нулю, то происходит прекращение выполнения функции Gauss c результатом false. После выбора строки выполняется преобразование матрицы по методу Гаусса. Далее вычисляется решение системы и помещается в массив x. Полученное решение выводится на экран при помощи вспомогательной процедуры WriteX.
2.1.4. Листинг программы и результаты работы
Uses CRT;
Const
maxn = 10;
Type
Data = Real;
Matrix = Array[1..maxn, 1..maxn] of Data;
Vector = Array[1..maxn] of Data;
Рекомендуем скачать другие рефераты по теме: бесплатные рефераты и курсовые, хозяйство реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата