Структура исчисления предикатов - построение логического вывода
Категория реферата: Рефераты по математике
Теги реферата: как лечить шпоры, реферат на тему земля
Добавил(а) на сайт: Ленин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Пример. Имеем терм f²₁(f²₁(a₁ , a₂), f²₂(a₁, a₃)).
Пусть область D — целые положительные числа, a₁ есть число 3, a₂ =4, a₃ = 5, f²₁ — сумма, f²₂ — произведение.
Тогда
f²₁(a₁ , a₂)=7;
f²₂(a₁, a₃)=15;
f²₁(f²₁(a₁ , a₂), f²₂(a₁, a₃))=22.
II. Свободным переменным в той или иной формуле (а тем самым и в составе термов этой формулы) в качестве значений приписывают, также как и постоянным термам, предметы из области D. Такие приписывания осуществляются когда мы хотим получить из интерпретированной формулы со свободными переменными высказывание нашего языка. Приписывание осуществляют заменой каждого вхождения некоторой свободной переменной какой-либо предметной константой с одновременной интерпретацией таковой, если она еще не была интерпретирована в формуле.
Будем говорить, что при осуществлении этих приписываний в добавление к уже имеющейся интерпретации формулы, формула оказывается полностью интерпретированной.
Однако важно заметить, что формулы со свободными переменными нужны не только для образования высказываний из них. Они представляют собой особые высказывательные формы, называемые предикатами. Это сложные знаковые формы возможных свойств предметов заданной области и возможных отношений среди этих предметов. По типу их предметных значений они должны быть отнесены к категории предакаторов. Можно назвать их сложными предикаторами (в отличие от простых, указанных среди исходных символов). Надо отметить, что эти формы не выделяются и даже не замечаются в естественных языках. Они играют, однако, решающую роль в теории понятия. Имея тот или иной предикат, можно ставить вопрос, для каких предметов, которые могут представлять свободные переменные, этот предикат выполняется или не выполняется. В таком случае мы просто указываем предметы для соответствующих переменных (не осуществляя указанных подстановок предметных констант вместо них). Например, можно сказать, что предикат «(Р2(x, a₁) > ∃yQ2(x, y))», — выражающий свойство какого-то числа х из области натуральных чисел, состоящее в том, что «если это число больше 5 (знаками отношения «больше» и «5» является соответственно Р2 и a₁ то оно делится без остатка (Q2) на некоторое число у», выполняется для чисел 6, 8, 9 и т. д., но не выполняется для 7, 11 и др.
III. Приписывание истинностных значений полностью интерпретированным формулам.
Напомним, что полностью интерпретированная формула — это формула, в которой осуществлена интерпретация дескриптивных постоянных и приписано значение всем свободным переменным, если таковые имеются в ней. Каждая такая формула представляет собой определенное высказывание — с определенным смыслом и истинностным значением — но лишь при условии, если нам известны значения встречающихся в ней — явным или неявным образом — логических констант, (которые и определяются рассматриваемыми правилами III). Явным образом указываются — в сложных формулах — логические константы, перечисленные в списке исходных символов. Простые атомарные формулы видов Pⁿ (t₁, …,tn) по-видимому, не содержат логических констант. Однако, неявным образом здесь присутствует логическое отношение принадлежности свойства Р некоторому предмету t при n= 1 или о наличии отношения Pⁿ между предметами t₁, …,tn из области D.
Определение значений всех логических терминов, как явно обозначенных, так и неявно содержащихся в формулах, осуществляется как раз посредством правил приписывания истинностных значений полностью интерпретированным формулам нашего языка (строго говоря, мы имеем здесь так называемое неявное определение логических констант, но они достаточны для понимания того, какой именно смысл они придают нашим высказываниям).
Правила эти таковы. Значение простого (атомарного) высказывания Pⁿ (t₁, …,tn), n >= 1, определяется в зависимости от заданных значений термов t₁, …,tn и предикатора Pⁿ . Оно зависит от характера предметов данной предметной области. Положим, имеем формулу: P²(f¹₁ (a₁), f¹₁(a₂)). Предположим, что согласно заданной интерпретации D — множество людей: Р2 означает «больше»: f¹₁ «возраст»: a₁ — Петров, a₂ — Сидоров. Вся формула представляет собой высказывание «Возраст Петрова больше, чем возраст Сидорова». Высказывание истинно или ложно в зависимости от того, имеет или не имеет место данное отношение между возрастами Петрова и Сидорова.
Заметим, что в части лексики мы перевели здесь высказывание, полученное из определенной формулы рассматриваемого языка (ЯКЛП), по существу на обычный естественный русский язык. В самом ЯКЛП знаковой формой его является упомянутая формула. Подобные переводы обычно напрашиваются сами собой в силу того, что задание значений отдельных терминов — составляющих формулу — осуществляется посредством выражений естественного языка. Мы говорим «значение Р2 — больше, a₁ и a₂ — соответственно Сидоров и Петров» и т. п.). Это значит, что приписывание предметных значений выражениям описываемого языка осуществляется методом перевода их в тот или иной естественный язык. Может показаться, что при упомянутых переводах высказываний данного языка на естественный теряется та самая точность их выражений, ради достижения которой как раз и строятся формализованные языки. Однако точность здесь по сравнению с естественными языками достигается не за счет более точною употребления отдельных терминов, — достаточная точность их уже должна быть обеспечена при осуществлении интерпретации выражений формализованного языка — а за счет определенных, стандартных способов построения высказываний и их логических форм. И она именно сохраняется, или точнее сказать, должна сохраняться при указанных переводах.
Для сложных формул имеем, предполагая, что все составляющие их формулы полностью интерпретированы.
Формула вида А & В имеет значение «истина» — при данной интерпретации и приписывании значений свободным переменным — е. т. е. А имеет значение И и В имеет значение И.
Формула A v В — истина е. т. е. значение А равно И или значение В равно И.
Формуле вида А ⊃ В приписывается значение И е. т. е. А имеет значение Л или В имеет значение И.
Значением формул вида ¬А является И е.т.е. значение А есть Л.
Формула вида ∀х А(х) имеет значение «истина» е. т. е. для всякого предмета а(i) из D, А(а(i)) — истина (А(а(i)) — результат замещения всех свободных вхождений х в А(х) константой а(i)¹).
Формула вида ∃ х А(х) имеет значение истина е. т. е. существует предмет а в области D такой, что истинна формула A(a(i)).
Если значение некоторой формулы не является И, то она имеет значение Л, но никакая формула не имеет одновременно значения И и Л.
Как уже говорилось, правила приписывания истинностных значений полностью интерпретированным формулам неявным образом определяют также значения логических констант «&», «v», «⊃ », «¬» и кванторов ∀ и ∃ и вместе с тем и смыслы высказываний, образованных посредством соответствующих констант. Например, высказывания вида ∀х А(х) , ∃ х А(х) ,относящиеся к некоторой области индивидов D, мы должны понимать, соответственно, как «для всякого предмета х из D верно А(х}» и «существует предмет х в D такой, что верно А(х)». Нетрудно видеть, что &, v, ⊃ ,¬ , представляют собой здесь логические связки — знаки функций истинности, — определенные ранее в разделе «Логика высказываний», но теперь применительно к формулам ЯЛП.
Примеры
Определим значение формулы —
Рекомендуем скачать другие рефераты по теме: курсовик, реферат по биологии 7 класс.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата