Теория игр и принятие решений
Категория реферата: Рефераты по математике
Теги реферата: шпоры по праву, диплом купить
Добавил(а) на сайт: Кондрат.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата
Выбор n субъективен т. к. Степень достоверности какой-либо функции распределения – дело тёмное.
Для применения критерия Ходжа-Лемана желательно, чтобы ситуация в которой принимается решение, удовлетворяла свойствам:
вероятности появления состояния Fj неизвестны, но некоторые предположения о распределении вероятностей возможны;
принятое решение теоретически допускает бесконечно много реализаций;
при малых числах реализации допускается некоторый риск.
3о. Критерий Гермейера.
Этот критерий ориентирован на величину потерь, т.е. на отрицательные значения всех eij. При этом
eir = eij qj.
Т.к. в хозяйственных задачах преимущественно имеют дело с ценами и затратами, условие eij 0. При этом оптимальный вариант решения зависит от а.
Правило выбора согласно критерию Гермейера формулируется следующим образом :
матрица решений дополняется ещё одним столбцом содержащим в каждой строке наименьшее произведение имеющегося в ней результата на вероятность соответствующего состояния Fj. Выбираются те варианты в строках которых находится наибольшее значение eij этого столбца.
В каком-то смысле критерий Гермейера обобщает ММ-критерий: в случае равномерного распределения qj = , j =, они становятся идентичными.
Условия его применимости таковы :
вероятности появления состояния Fj неизвестны;
с появлением тех или иных состояний, отдельно или в комплексе, необходимо считаться;
допускается некоторый риск;
решение может реализоваться один или несколько раз.
Если функция распределения известна не очень надёжно, а числа реализации малы, то, следуя критерию Гермейера, получают, вообще говоря, неоправданно большой риск.
4о. BL (MM) - критерий.
Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых составных критериев. В качестве примера рассмотрим критерий, полученный путем объединения критериев Байеса-Лапласа и минимакса.
Правило выбора для этого критерия формулируется следующим образом:
матрица решений дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором - разность между опорным значением
и наименьшим значением
соответствующей строки. В третьем столбце помещаются разности между наибольшим значением
Рекомендуем скачать другие рефераты по теме: читать рассказы, реферат на тему экология.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата