Теория устойчивости
Категория реферата: Рефераты по математике
Теги реферата: математика, решебник по английскому языку
Добавил(а) на сайт: Сухих.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
3. Простейшие типы точек покоя.
Пусть имеем систему дифференциальных уравнений
æ dx / dt = P ( x , y ),
í (A)
î dy / dt = Q ( x , y ).
Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.
Рассмотрим систему
æ dx / dt = a11 x + a12 y,
í (7)
î dy / dt = a21 x + a22 y.
где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде
x = a 1 e k t , y = a 2 e k t . (8)
Для определения k получаем характеристическое уравнение
a11 - k a12
= 0. (9)
a21 a22 - k
Рассмотрим возможные случаи.
I. Корни характеристического уравнения действительны и различны. Подслучаи :
1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).
Рекомендуем скачать другие рефераты по теме: шпоры бесплатно, культура конспект.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата