Транспортная задача линейного программирования
Категория реферата: Рефераты по математике
Теги реферата: сочинение описание, курсовики скачать бесплатно
Добавил(а) на сайт: Эсмеральда.
Предыдущая страница реферата | 20 21 22 23 24 25 26 27 28 29 30
max=289,5.
Так как min=max, то по критерию оптимальности найдены оптимальные решения прямой и двойственной ЗЛП. Содержательный ответ: Оптимально перевозить так:
Из А1 в B1 – 35 рулонов полотна;
Из А1 в B2 – 15 рулонов полотна;
Из А2 в B1 – 5 рулонов полотна;
Из А2 в B3 – 15 рулонов полотна;
Из А3 в B2 – 35 рулонов полотна;
Из А3 в B5 – 40 рулонов полотна;
Из А4 в B4 – 75 рулонов полотна.
При этом стоимость минимальна и составит Dmin=289,5. 5 рулонов полотна необходимо оставить на складе А4 для их последующей перевозки в другие магазины.
8.Выводы.
В курсовой работе изложены основные подходы и методы решения транспортной задачи, являющейся одной из наиболее распространенных задач линейного программирования. Решение данной задачи позволяет разработать наиболее рациональные пути и способы транспортирования товаров, устранить чрезмерно дальние, встречные, повторные перевозки. Все это сокращает время продвижения товаров, уменьшает затраты предприятий и фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.
Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:
оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;
оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;
задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;
увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;
решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.
Таким образом, важность решения данной задачи для экономики несомненна. Приятно осознавать, что у истоков создания теории линейного программирования и решения, в том числе и транспортной задачи, стоял русский ученый – Леонид Витальевич Канторович.
Список литературы
1. Кузнецов А.В., Сакович В.А., Холод Н.И. ”Высшая математика. Математическое программирование ”, Минск, Вышейшая школа, 2001г.
2. Красс М.С., Чупрынов Б.П. ”Основы математики и ее приложения в экономическом образовании”, Издательство “Дело”, Москва 2001г.
3. В.И. Ермаков “Общий курс высшей математики для экономистов”, Москва, Инфра-М, 2000г.
Скачали данный реферат: Sajankin, Артемьев, Kovshutin, Разумов, Jasnov, Jashihin.
Последние просмотренные рефераты на тему: онлайн решебник, международное право реферат, класс, налоги и налогообложение.
Предыдущая страница реферата | 20 21 22 23 24 25 26 27 28 29 30