Волновой генетический код
Категория реферата: Рефераты по математике
Теги реферата: найти реферат, скачати реферат на тему
Добавил(а) на сайт: Еликонида.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
С.153 -154: Но дальше следует “...однако, все же имеется одна реальная возможность появления неопределенности при синтезе белка. Эта неопределенность могла бы возникнуть, если бы одно кодовое слово соответствовало нескольким аминокислотам. До настоящего времени был отмечен только один случай такой неопределенности. Белок, син-тезируемый поли-U, состоит не только из лейцина, но и из фенилаланина, причем на каждую молекулу лейцина приходится 20-30 молекул фенилаланина. При отсутствии в растворе фенилаланина поли-U использует лейцин в количестве, равном половине обычно используемого количества фенилаланина. Молекулярное объяснение этой неопределенности неизвестно”. Это первая и четкая констатация логического несовершенства предлагаемой модели кодирования, ее противоречия фактам. Затем, сомнения еще более усиливаются.
С.155: “некоторые кодовые слова почти наверняка состоят из трех оснований. Однако, 18 из 20 аминокислот могут быть закодированы словами, содержащими только два различных основания. Если же код все-таки троичный, то возможно, что в некоторых случаях правильное кодирование будет иметь место при условии, что из трех оснований считывается только два. Возможно, что такое несовершенство случается более часто в синтетических РНК-полимерах, содержащих одно или два основания, чем в естественных РНК-посредниках, которые всегда состоят из смеси всех четырех оснований. Поэтому результаты, полученные с помощью искусственных РНК, свидетельствуют лишь о кодовых возможностях клетки...”
Явно просматривается неуверенность, что код только триплетный, он может быть и дуплетным, и тетраплетным и даже гетеромуль-типлетным. Нам же представляется, в развитии этих сомнений, что кодовые возможности клетки, хромосом, ДНК не исчерпываются знаковыми тройками нуклеотидов. Как речеподобные структуры, нуклеиновые кислоты в составе хроматина способны к образованию in vivo метаязыков методом фрактализации, и поэтому кодирование белкового континуума может проходить через крупные блоки, шифрующие не только порядок включения отдельных аминокислот в пептид, но и последовательность создания белковых доменов, субъединиц и даже структурно-функциональных ансамблей ферментов, например, дыхательной цепи. Фрактальность в данном случае может пониматься и так: ДНК, РНК и белки - это разноязыкие тексты и то, что было в одном масштабе “фразой” или “предложением” в другом, более крупном, будет “словом”. Если еще укрупнять - “слово” превращается в “букву”. При более общем подходе можно рассматривать такие разномасштабные смысловые построения как знаки (иероглифы), являющиеся субстратом своего рода “информационного метаболизма” клеток. Такой путь образования метаязыков свойствен математике. У нас нет оснований думать, что геном не пользуется этим “математическим приемом” в полной мере, строя все новые усложняющиеся семиотико-семантические ареалы с их постоянными переобозначениями на разных уровнях организации биосистемы в процессе ее развития. При этом роль основной массы синтезирующихся в организме белков заключается в реализации метаболических конструкций, неявно закодированных в ДНК и имеющих квази-вербальную составляющую. Биосистему можно рассматривать как совокупность таких конструкций, и это находит определенное подтверждение в работах [25,26,29]. Такой ход рассуждений хорошо соответствует представлениям В.В.Налимова, считающего все живое частью Семантической Вселенной [49]. Человек, в соответствии с такой логикой, есть многообразие текстов, грамматику и семантику которых мы хотим охватить единым, вероятностно задаваемым взглядом. В.В.Налимов полагает, что личность является самочитаемым текстом - текстом, способным самоизменять себя. Уменьшая масштаб рассмотрения человека как самоорганизующейся системы и учитывая фрактальность (переходящую иногда в голографичность) его хромосомного континуума, можно считать, что обратное отображение человека в его собственный геном, как и отображения любого организма в его хромосомы, носит изоморфный текстово-образный характер [25,29]. Предлагаемый способ рассуждений призван показать прием логического выхода из ограничений первичной модели генетического кода, остановившейся в фазе слабого понимания правил орфографии "записи" белковых “слов” из аминокислотных "букв". Если же рассматривать идею фрактальности смысловых (текстовых) конструкций генома и принять их божественное начало, то подчеркнем, что эта идея восходит к VI в. и предложена Дионисием Ареопагитом в его труде “О божественных именах”. Он говорит, что печать Божественности (читай слова) лежит на каждом из нас, и “...оттиски Печати имеют много общего с ее оригиналом: оригинал присутствует в каждом из отпечатков весь, и ни в одном из них - лишь какой-то своей частью”. Частичность Печати определяется свойствами воспринимающего материала - конкретной личности, т.е. потенциально в каждого привносится все, идущее свыше, но расслышать, увидеть и понять это все целиком не под силу никому.
Неспособность ранней концепции генетического кода быть непротиворечивой, казалось, должна была побудить к поиску новых идей. Вместо этого предпочтение было отдано анализу механизмов точности белкового синтеза, но без главного мотива этой точности - механизмов выбора однозначностей из кодирующих дуплетов-омонимов. Вот образец этих, в данном аспекте бесполезных, описаний и рассуждений, но необходимых нам для иллюстрации псевдологики в оценке главного в генокоде [20]: “ ... точность белкового синтеза зависит от надежности двух адапторных механизмов: от связывания каждой аминокислоты с соответствующей молекулой тРНК и от спаривания кодонов в иРНК с антикодонами тРНК. Два механизма, действующие на этих этапах, совершенно различны. У многих аминоацил-тРНК-синтетаз имеется два отдельных активных центра: один ответственный за реакцию присоединения аминокислоты к тРНК, и другой, распознающий “неправильную” аминокислоту и удаляющий ее путем гидролиза. Точность спаривания кодона с антикодоном обеспечивается более тонким механизмом “кинетической коррекции”. После того как молекулы тРНК присоединят соответствующую аминокислоту, они образуют комплекс с особым белком, т.н. фактором элонгации (ФЭ,EF), который прочно связывается с аминоацильным концом молекулы тРНК и с молекулой GTP. Именно этот комплекс, а не свободная тРНК спаривается с надлежащим кодоном в молекуле иРНК. Связанный таким образом ФЭ обеспечивает возможность правильного спаривания антикодона с кодоном, но при этом препятствует включению данной аминокислоты в растущий пептид. Начальное узнавание кодона служит для ФЭ сигналом к гидролизу связанного с ним GTP до GDP+P, после чего ФЭ отделяется от рибосомы без тРНК и синтез белка продолжается. Благодаря ФЭ возникает короткий разрыв во времени между спариванием кодона с антикодоном и элонгацией пептида, что позволяет тРНК отделиться от рибосомы. “Неправильная” молекула тРНК образует в паре кодон - антикодон меньше водородных связей, чем правильная; поэтому она слабее удерживается на рибосоме и значит за данный промежуток времени имеет больше шансов отделиться”.
Комментируя эту, важную для нас, длинную выдержку, можно сказать, что акцент в ней сделан на взаимном узнавании тРНК и аминокислот через посредство аминоацил-тРНК-синтетаз. Механизм его не ясен. Что касается точности узнавания кодоном антикодона, то она иллюзорна в силу “воблирования” третьего нуклеотида, что уже обсуждалось. Представляется, что выбор из дуплетных кодонов-омонимов реализуется по резонансно-волновым и контекстным (ассоциативным, голографическим) и так называемым "фоновым механизмам" (см. ниже). До сих пор они находились вне экспериментов и рассуждений, но в настоящее время необходимость в этом очевидна. Омонимичность (неоднозначность) кода может быть преодолена точно так же, как это происходит в естественных языках ,- путем помещения омонима, как части, в целое, т.е. в законченную фразу, контекст которой дешифрует омоним и присваивает ему единственное значение, создавая однозначность. Поэтому иРНК в качестве своего рода “фразы” или “предложения” должна работать в белковом синтезе как функциональное кодирующее целое, задающее последовательность аминокислот на уровне ассоциатов аминоацилированных тРНК, которые комплементарно взаимодействуют со всей молекулой иРНК. При этом роль А,Р-участков рибосомы, если они реальны, заключается в акцепции таких ассоциатов - предшественников белка с последующей энзиматической сшивкой аминокислот в пептидную цепь. В этом случае будет происходить контекстно-ориентированный однозначный подбор бывших омонимичных дуплет-кодонов. Можно предсказать в связи с этим, что взаимодействие аминоацилированных-тРНК с иРНК носит коллективный фазовый характер по типу реассоциации (“отжига”) однотяжных ДНК при понижении температуры после “плавления” нативного полинуклеотида. Существуют ли экспериментальные данные, которые можно было бы трактовать в таком духе? Их немало и они сведены в обзорно-аналитическом исследовании [52]. Приведем некоторые из них.
Известно, что правильность узнавания молекулами тРНК терми-нирующих кодонов зависит от их контекстного окружения, в частности, от наличия за стоповым кодоном уридина и, кроме того, в работе убедительно показано следующее. Вставка строки из девяти редко используемых CUA-лейциновых кодонов после 13-го в составе 313 кодонов тестируемой мРНК сильно ингибируют их трансляцию без явного влияния на трансляцию других мРНК, содержащих CUA-кодоны. Напротив, строка из девяти часто используемых CUG-лейциновых кодонов в тех же позициях не имела выраженного эффекта на трансляцию. При этом ни редко, ни часто используемые кодоны не влияли на этот процесс, когда были введены после кодона 223 или 307. Дополнительные эксперименты продемонстрировали, что сильный позиционный эффект редко используемых кодонов не может быть объяснен различиями в стабильности иРНК или в степени строгости выбора соответствующих тРНК. Позиционный эффект становится понятным, считают авторы, если допустить, что транслируемые последовательности менее стабильны вблизи начала считывания: замедленность трансляции реализуется посредством малого использования кодонов, которые раньше следуют в сообщении, и это приводит к распаду продуктов трансляции, раньше чем осуществится полная трансляция. Как видим, для трактовки собственных экспериментов привлекаются громоздкие допущения о распаде продуктов трансляции, допущений, никак не следующих из их работы, и которые требуют специальных и тонких исследований. В этом смысле наша идея контекстных ориентаций в управлении синтезом белков проста, хотя экспериментально доказать ее непросто. Цитируемая работа хорошо высвечивает стратегическую линию влияния строго определенных и далеко расположенных от места образования пептидной связи кодоновых вставок в иРНК на включение или невключение конкретной аминокислоты в состав синтезируемого белка. Это именно дистантное влияние, но в цитируемой работе оно просто констатируется, оставаясь для исследователей непонятным и, видимо, поэтому даже не обсуждается. Таких работ становится все больше. В той, что мы обсуждаем, ссылаются, к примеру, на полдюжины аналогичных результатов, где трактовка в этом смысле также затруднена. Причиной этому является несовершенство общепринятой модели генетического кода. Это верно и потому, что имеются данные о существовании так называемого протяженного (swollen) антикодона [52]: во взаимодействии тРНК с иРНК в А-сайте рибосомы участвуют не три, а большее количество пар оснований. Это означает, что принятый пов-семестно постулат триплетности кода нарушается и здесь. Там же, в [52], приводятся результаты работы по взаимодействию тРНК-тРНК на рибосоме, и это соответствует нашей идее об ассоциате аминоацилированных тРНК как предшественнике белка. В [52] высказана мысль, что эффект действия контекста иРНК на однозначное включение аминокислот в пептид является отражением неких фундаментальных и пока плохо изученных закономерностей декодирования генетической информации в процессе белкового синтеза. В работе Ульфа Лагерквиста [11] “wobble”- гипотеза Крика получила расширенную трактовку и крайнее выражение, согласно которому нуклеотид в третьем положении кодона иРНК является лишним, бессмысленным, избыточным, его присутствие игнорируется, и поэтому чтение антикодоном кодона производится по правилу “два из трех”. Отсюда логично следует массированная неоднозначность прочтения иРНК и некорректность трансляции белковых молекул, что противоречит экспериментам, и это констатируется в [52], равно как и в других исследованиях. Вместе с тем, отмечается, что существует определенный уровень неоднозначности трансляции иРНК в клетке, но он слабо поддается осмыслению. Помимо ошибочной трансляции значащих кодонов и считывания стоп-кодонов как аминокислотных, в процессе белкового синтеза могут происходить многочисленные нормальные и редко ошибочные сдвиги и перекрытия рамок трансляции. Ошибки возникают в результате считывания дуплетов или квадриплетов оснований как кодонов. Механизмы сдвигов рамки считывания практически не изучены. Во многих работах показано, что ошибочная трансляции белков рибосомой вызывается разнообразными неблагоприятными факторами - антибиотиками, изменением температуры, созданием определенных концентраций катионов, аминокислотным голоданием и другими условиями внешней среды. Повышенная неоднозначность трансляции кодонов, локализованных в особом контексте, имеет биологическое значение и приводит к неслучайному распределению “ошибочных” аминокислот по длине синтезируемого полипептида, приводящему к модификациям функций белков с выходом на механизмы клеточных дифференцировок, и поэтому контексты иРНК являются субстратом естественного отбора. Оптимальный уровень “ошибок” трансляции (если это действительно ошибки) регулируется неизвестными механизмами, и он онтогенетически и эволюционно оправдан [52]. Этому соответствуют и наши экспериментально-теоретические данные [8-18] о волновых знаковых взаимодействиях в водно-жидкокристаллической среде клетки, в которые вовлечен белок-синтезирующий аппарат. Нами обнаружены резонансные частоты, общие для ДНК, рибосом и коллагена, и имеющие, вероятно, биознаковую природу, а также открыта способность хромосом и ДНК быть лазеро-активной средой [18].
Вернемся вновь к общепринятым поначалу основным положениям генетического кода: он является триплетным, неперекрывающимся, вырожденным, не имеет “запятых”, т.е. кодоны ничем не отделены друг от друга. И наконец, он универсален. Что осталось от этих положений? Фактически ничего. В самом деле, код, видимо, является двух-, трех-, четырех-, ... n-буквенным как фрактальное и гетеромультиплетное образование. Он перекрывающийся. Он имеет запятые, поскольку гетерокодоны могут быть отделены друг от друга последовательностями с иными функциями, в том числе с функциями пунктуации. Код не универсален - в митохондриях он приобретает специфические черты. Как понимать генетический код с учетом приведенных противоречий и предлагаемой нами логики рассуждений?
Для снятия этих противоречий можно постулировать качественную, упрощенную, первичную версию вещественно-волнового контроля за порядком выстраивания аминокислот в ассоциате аминоацилированных тРНК как предшественнике белка. С этой позиции легче понять работу генетического, а точнее белкового, кода как одной из множества иерар-хических программ вещественно-волновой самоорганизации биосистемы. В этом смысле такой код - первый этап хромосомных планов построения биосистемы, поскольку язык генома многомерен, плюралистичен и не исчерпывается задачей синтеза протеинов. Более детальное, физико-математически формализованное и экспериментально подтверждаемое, изложение новой версии работы белок-синтезирующего аппарата разра-батывается нами в настоящее время, хотя надо признать, что это задача xxI-xxII веков.
Основные положения предлагаемой ориентировочной модели вещественно-волновых знаковых процессов при биосинтезе белков сводятся к следующему:
1. Многокомпонентный рибонуклеопротеидный белоксинтезирую-щий аппарат является системой генерации высокоорганизованных знаковых семиотико-семантических излучений акустико-электромагнитных полей, стратегически регулирующих его самоорганизацию и порядок включения аминокислот в полипептидную цепь.
2. Аминоацилированные пулы тРНК ассоциируют в последователь-ности - предшественники синтезируемых белков до контакта с А-P участком рибосомы. При этом континуум антикодонов пула комп-лементарен всей иРНК, за исключением дислокаций, определяемых наличием неканонических нуклеотидных пар.
3. Порядок чередования аминоацилированных тРНК в ассоциатах-предшественниках белков определяется знаковыми коллективными резонансами всех участников синтеза аминокислотных последовательностей. Ключевые волновые матрицы здесь пре-иРНК, а также иРНК, работающие как целостный континуум разномасштабных по длине гетерополикодонов, включая интронную фракцию пре-иРНК как возможных макроконтекстов. Главная функция волновых матриц - ассоциативно-контекстная ориентация последовательности аминоацилированных тРНК, ориентация, в большей степени, чем воблгипотеза, игнорирующая правила канонических спариваний нуклеотидов в пространстве иРНК-тРНК.
4. На рибосоме, в дополнение и (или) наряду с резонансными регуляциями взаимного расположения кодон-антикодоновых континуумов функционируют лазероподобные излучения участников данного процесса, корригирующие порядок включения аминокислотных остатков в пептид.
5. Рибосома энзиматически ковалентно фиксирует “де-юрэ” пептидные связи аминокислотных последовательностей, намеченные “де-факто” в полиаминокислотном-поли-тРНК-ассоциате, как предшествен-нике белка.
6. Резонансно-волновая “цензура” порядка включения аминокислот в пептидную цепь устраняет потенциальный семантический произвол создания ошибочных белковых “предложений”, следующий из омонимии семейств кодонов, и обеспечивает их “аминокислотное осмысление” за счет контекстного снятия омонимии неоднозначных одинаковых дублетов в кодонах. Тот же механизм работает при неоднозначностях более высокого порядка, когда число кодонов (n+1).
7. Вырожденность генетического кода необходима для пре-иРНК-иРНК-зависимого контекстно-ориентированного точного подбора ацили-рованных тРНК, определяемого характером волновых ассоциативных резонансных взаимодействий в белок-синтезирующем аппарате.
8. Один из механизмов процесса создания безошибочных после-довательностей аминоацилированных тРНК на волновых матрицах пре-иРНК- иРНК можно рассматривать как частный случай частично комплементарной реассоциации однотяжных ДНК-ДНК и РНК-ДНК или, в более общем случае, как акт самосборки, известный для рибосом, хромосом, мембран и других молекулярно-надмолекулярных клеточных структур.
Таким образом, роль иРНК дуалистична. Эта молекула, как и ДНК, в эволюции знаменует собой узловое событие - взаимодополняющее синергичное расслоение вещественной и волновой геноинформации. Неоднозначность вещественного кодирования снимается прецезионностью волнового, которое реализуется, вероятно, по механизмам коллективных резонансов и лазерно-голографических (ассоциативных, контекстных) эффектов в клеточно-тканевом континууме [25,26,29]. Мега-контекстом здесь выступает словесно-волновое Божественное Начало. Скачок к более развитому волновому регулированию трансляции РНКБелок сопровождается частичным или полным отказом от правила канонического спаривания аденина с урацилом (тимином) и гуанина с цитозином, свойственного эволюционно ранее отобранным этапам репликации ДНК и транскрипции РНК. Такой отказ энергетически невыгоден в микромасштабе, однако информационно необходим, неизбежен и энергетически предпочтителен на уровне целостного организма.
Особо подчеркнем, что контекстные ассоциативно-голографические механизмы работы белок-синтезирующей системы организмов тесней-шим образом связаны с так называемым "Фоновым Принципом", который оказался универсальным и явился предметом крупного открытия [50]. С этой позиции макроконтексты пре-информационных и контексты информационных РНК можно рассматривать как фон, который обеспечивает резкое усиление сигнала, то есть выбора именно данной из двух омонимичных аминоацилированных тРНК, которая должна войти в белковую “фразу” или “слово”. Этот выбор возможен только после выделения когерентной составляющей в форме повторов одних и тех же осмыслений дублетов-омонимов в кодонах. Эту ситуацию можно пояснить на простом примере. Скажем, в предложении надо выбрать одно из двух слов (аналогов кодонов с дублетами-омонимами). Эти слова - “суд” и “сук”. Ясно, что выбор зависит от целого предложения, от контекста, который выступает как фон, позволяющий выделить сигнал - нужное слово. Если предложение звучит “я увидел толстый сук на дереве”, то замена здесь слова “сук” на “суд” будет равносильна введению шума и потере сигнала. Вероятно, аналогична роль пре-информационных РНК и интронов - это различные уровни контекстов, которые должны быть ка-ким-то образом “прочитаны” и “осмыслены” живой клеткой. “Субъектом чтения” может выступать многоликое семейство солитонов - оптических, акустических, конформационных, вращательно-колебательных и иных.
Функции таких солитонов могут выступать как способы регуляции кодон-антикодоновых знаковых взаимодействий. В качестве одного из способов можно представить солитонный механизм крутильных коле-баний нуклеотидов на сахаро-фосфатной оси иРНК, рассмотренный нами для однотяжных РНК-подобных участков ДНК [24]. Этот механизм “запоминает” последовательность нуклеотидов и может, вероятно, пере-давать информацию об этом дистантно, т.е. на расстояниях, существенно превышающих длину водородных связей. Без дальней (волновой) миг-рации сигнала о пре-иРНК-иРНК-последовательностях невозможна реализация ассоциативно-контекстных регуляций синтеза белков. Здесь необходима волновая континуальность, напрямую связанная с вкладом Божественного Начала как мегаконтекста, выступающего в форме естественного электромагнитного и акустического окружения земного шара. Первичная проверка предлагаемых положений может быть проведена относительно простым способом - по результатам влияния электромагнитных и акустических полей на синтез белков в бесклеточных рибосомальных системах, например с помощью ФПУ-генераторов и предполагаемых лазеров на ДНК [18,24,25,34,35].
Можно высказать предположение, что нарастающее увеличение людских так называемых внезапных смертей посреди видимого здо-ровья, приуроченных к зонам высоких уровней “электромагнитного СВЧ-смога”, зависит от нарушений тонкой волновой регуляции белко-вого синтеза. При этом могут образовываться аномальные белки “электромагнитного шока”, в том числе и ферментные системы синтеза эндерпинов ( эндогенных производных резерпина ), которые могут являться аномальными ко-факторами оксидоредуктаз, быстро блоки-рующими процессы внутриклеточной наработки энергии и, как следствие, летальный исход [28; неопубликованные результаты].
РАСШИРЕНИЕ МОДЕЛИ ВОЛНОВОГО ГЕНЕТИЧЕСКОГО КОДИРОВАНИЯВ наших исследованиях [напр., 25] мы доказываем, что синтез бел-ка - лишь один из примеров генетического кодирования на волновом, стратегическом уровне, и трактуем генетическую память расширенно как солитонно-голографическую, свойственную геному-биокомпьютеру. Мы развиваем идеи Гурвича, Любищева и Беклемишева об излучениях хромосом, о “геноме-оркестре”. Действительно, если сравнить “запись” будущего организма на ДНК яйцеклетки с нотной записью, то одна музыкальная фраза способна ассоциативно восстановить всю совокупность музыкальных образов в нашей памяти, если мы хоть раз слышали мелодию. Принимая это, мы выходим на представления образного, знакового кодирования структуры организма последовательностями ДНК, т.е. они, последовательности нуклеотидов, являются чем-то вроде звучащих и видимых текстов, но не в поэтико-метафорическом смысле, а действительно текстами на неизвестных пока языках божественного происхождения в сложно-ритмической (музыкально-подобной?) волновой аранжировке. Но излучают ли хромосомы свет и звук? Эксперименты дают однозначно положительный ответ. Акустические поля хромосом, генерируемые как живыми клетками и их ядрами, так и выделенными из хромосом препаратами ДНК, сложно организованы, могут приобретать структуру солитонов, а главное, способны к дистантной трансляции гено-волновой информации [1,8,25,26-29]. Генетические молекулы дуалистичны - будучи веществом, они же работают как источники физических знаковых полей. Хромосомы, как главная знаковая фигура любой биосистемы, расщепляются на многомерные фрактальные семиотические структуры вещества и поля, закоди-рованные божественным промыслом.
Заметим, что зачатки этих идей и экспериментов возникли не на пустом месте (подробно об этом в [25] ). Первыми были, как упоминалось, Гурвич, Любищев и Беклемишев (20-е - 40-е годы), затем, через несколько десятилетий, в Новосибирске А.Н.Мосолов (1980г.), а затем группа ученых из Института общей физики АН (1984г.) с помощью световой и лазерной микроскопии обнаружили в клеточных ядрах (хромосомах) нейронов некие вибрирующие (звучащие) сферические образования. А.Н.Мосоловым было высказано предположение, что они являются источниками информационно-силовых генетических, а точнее, эмбриональных полей в духе идей А.Г.Гурвича, но с существенной поправкой: во-первых, это не фотонные поля, во-вторых, обнаруженные звуковые излучения, по Мосолову, имеют голографическое проис-хождение. Это была первая четко сформулированная гипотеза знако-несущих (образных) волновых голографических структур генома высших биосистем. Эту гипотезу мы развили на основании собственных исследований.
Мы шли несколько иным путем, пытаясь на первых этапах доказать правильность физико-математической модели Инглендера, предложенной им в 1980г., об особых волновых состояниях ДНК-солитонах. Затем теоретических моделей солитонов появилось множество, но никто до 1991г. солитонов на ДНК экспериментально не обнаружил. В 1985г. методом спектроскопии корреляции фотонов нам удалось зафиксировать необычные аномально долго затухающие колебания (звук) ДНК in vitro с меняющимся спектральным составом, особым образом распределенным во времени. Это наблюдение было настолько необычно, что было принято за экспериментальную ошибку и поэтому забыто на 6 лет до тех пор, когда мы вновь повторили эту работу. Было обнаружено, что ДНК обладает способностью как бы в автоматическом режиме (квази-спонтанно) синтезировать “незамолкающую сложную мелодию с повторяющимися музыкальными фразами” [8,25,29]. Такие повторы по ряду признаков походили на солитонный процесс в форме явления так называемого возврата Ферми-Паста-Улама (ФПУ), а сами колебания ДНК сродни тем, что наблюдали Мосолов и др.
Коротко о возврате ФПУ. Если в цепочке осцилляторов (маятников), соединенных пружинками с нелинейными связями, возбудить один из них, то возникнет необычное колебание с повторениями (возвратами) энергии первоначального возбуждения. Это своего рода “память” всех нелинейных систем, свойственная и молекулам ДНК, что продемонстрировано на уровне теоретической модели А.А.Березиным. Но в ДНК такая память, как показали наши исследования, приобретает особое значение. Она может нести семиотическую нагрузку и выступать в форме своего рода “волновых генов” - солитонов с внутренней колебательной структурой, сходной, вероятно, с голограммами [25]. Однако, для избирательного “чтения” in vivo генетических голограмм на уровне солитонов и в пределах жидкокристаллического хромосомного континуума биосистемы необходимо лазерное поле хромосомного аппарата. Долгие годы его пытались найти и воспроизвести вне живой клетки. В принципе, нам это удалось. Мы получили лазерное излучение на препаратах ДНК и хромосом методом двухфотонно-возбуждаемой люминесценции [14].
Рекомендуем скачать другие рефераты по теме: охрана труда реферат, экзамен.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата