Волновой генетический код
Категория реферата: Рефераты по математике
Теги реферата: найти реферат, скачати реферат на тему
Добавил(а) на сайт: Еликонида.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
где: - число пар оснований в цепи; - гамильтониан, описывающий собственные осцилляции мономеров ( - углы вращения нуклеотидов в цепочке, - момент инерции оснований); - гамильтониан , характеризующий нелинейно-периодическую связь между осцилляторами (- константа упругости цепочки, ), - гамильтониан,
(а)
(б)
а)x0=200 б)x0=250
Рис.3
в) г)
в) x0=300 г) x0=350
Рис. 4
описывающий нелинейную связь между “активной” и “замороженной” () цепочками ДНК (- константа упругости водородных связей между комплементарными основаниями, коэффициенты в уравнении (1) определяются в соответствии с правилом: в случае АТ и ТА пар, в случае ГЦ и ЦГ пар; - параметр, полученный ранее (см. выше) и определяемый на основе модели синус-Гордона).
При малых гамильтониан, что совпадает с соответствующей частью общего гамильтониана, использованного ранее (см. выше). В этом случае уравнения движения для , полученные из (1),
имеют вид:
(2)
где произведена замена .
В случае в системе (2) можно перейти к безразмерному дифференциальному уравнению синус-Гордона:
, (3)
”непрерывный аналог” системы (2). Это уравнение имеет солитонные решения, в частности, односолитонное решение, или кинк, характеризующий динамику распространения дислокации в цепи.
В соответствии с (1) система нелинейных уравнений движения записывается следующим образом:
(4)
Как видим, системы (2) и (4) существенно различаются. Отметим, однако, что проведенное нами численное моделирование динамики систем (2) и (4) показало следующее: если в качестве начальных условий для численного интегрирования (2) выбрать односолитонное решение его “непрерывного аналога” (3) - кинк (см. выше), то обнаруживается принципиальное сходство в характере решений.
Однако, при задании начальных условий в следующем виде:
(5)
где - ”ступенчатая” функция с высотой ступени и углом наклона уступа A, выявилось различие динамики данных систем (срав. рис.1 и 2,3). Более точно, системы (2) и (4) численно интегрировались методом Рунге-Кутта четвертого порядка с начальными условиями, заданными в виде (7), в интервале с шагом . Граничные условия - “квази-циклические”:
(поли-A-последовательность). Параметр системы . Варьировался параметр A (угол наклона уступа функции ).
Численное интегрирование системы (2) ( рис. 1) показало, что образуются две уединенных волны, движущихся справа налево по цепи с постоянной скоростью. Первая волна имеет форму квазикинка, а вторая волна имеет форму квазибризера, причем скорость первой волны превосходит таковую для второй. Обе волны за счет “квазициклических” граничных условий, доходя до левого конца, появляются на правом конце без изменения своей формы. Квазикинк, проходя по цепи маятников, изменяет координату каждого маятника на угол (маятник делает полный оборот). Поэтому, проходя по замкнутой цепи маятников К раз, он изменяет координату каждого маятника на угол Этим объясняется “уступообразная” форма графика на рис. 1.
Рекомендуем скачать другие рефераты по теме: охрана труда реферат, экзамен.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата