Вычисление многочленов — от Ньютона до наших дней
Категория реферата: Рефераты по математике
Теги реферата: изложение по русскому, культурология
Добавил(а) на сайт: Krasil'nikov.
Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата
5. Докажите индукцией по k≥2 универсальность схемы (7.k).
Решение
Пусть f(x) = x2k + a1x2k–1 + ... + a2k.
Нам нужно по коэффициентам a1, ..., a2k многочлена f (x) найти параметры b1, ..., b2k, превращающие последнюю строку схемы (7.k) в тождество.
Параметр b1 — единственный, для которого существует формула, причём простая.
Лемма 1. Справедливо соотношение
a1 = kb1 + 1. |
(I) |
Доказательство проводится индукцией по k≥2.
Если k=2, то a1 = kb1 + 1 согласно (6) (роль b1 играет в (6) параметр A).
Пусть k≥3, и пусть в схеме (7.k)
pk–1(x) = x2k–2 + αx2k–3 + ... ;
тогда
pk = pk–1(p1 + b2k–1) + b2k =
= (x2k–2 + αx2k–3 + ...)(x2 + b1x + b2k–1) + b2k =
= x2k + (α + b1)x2k–1 + ... ,
так что, если по предположению индукции α = (k – 1)b1 + 1, то a1 = α + b1 = kb1 + 1.
Возможность вычисления значении остальных параметров по значениям коэффициентов также доказывается индукцией по k≥2.
База индукции. k=2, n=4. Схема (5), формулы (6).
Посылка индукции. Пусть при некотором j=k–1≥2 схема (7.k–1) универсальна, то есть любому набору чисел A1, A2, ..., A2k–2 соответствуют значения b1, b2, ..., b2k–2 параметров, подставив которые в схему (7.k–1), мы получим многочлен
pk–1(x) = x2k–2 + A1x2k–3 + ... + A2k–2. |
(II) |
Шаг индукции. Тогда схема (7.k) также универсальна. Выпишем предпоследнюю строку этой схемы:
pk(x) = pk–1(x)·(x2 + b1x + b2k–1) + b2k. |
(III) Рекомендуем скачать другие рефераты по теме: бесплатные курсовые работы, банк курсовых. Предыдущая страница реферата | 4 5 6 7 8 9 10 11 12 13 14 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |