
Высшая математика
Категория реферата: Рефераты по математике
Теги реферата: изложение по русскому языку, bestreferat
Добавил(а) на сайт: Первак.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Найдите пределы, используя правило Лопиталя:

Решение:
.
Ответ:Заданный предел равен .
Написать в точке уравнение касательной плоскости к поверхности, заданной уравнением:
.
Решение:
Уравнение касательной плоскости к графику функции в точке
имеет вид:
. Поэтому, продифференцируем заданное уравнение поверхности:
. Подставив в полученное уравнение координаты точки
вместо значений переменных, и заменив дифференциалы переменных на их приращения, получим:
.
Ответ:Уравнение касательной плоскости к заданной поверхности в заданной точке имеет вид
.
Найти наибольшее и наименьшее значение функции в области:
.
Решение:
Т.к. заданная функция дифференцируется в замкнутой ограниченной области, то свое наибольшее/наименьшее значение она достигает или в стационарной точке внутри области дифференцирования, или на границе области.
Найдем стационарные точки заданной функции, для этого решим систему:
, точка
не принадлежит заданной области дифференцирования, значит стационарных точек внутри области нет, следовательно, наибольшее/наименьшее значение функцией достигается на границе области дифференцирования. Граница области ограничена окружностями
и
. Найдем наибольшее/наименьшее значение на границах области дифференцирования. Для этого составим функцию Лагранжа:



Эта система имеет четыре решения:
|
Точка |
|
Точка |
|
Точка |
|
Точка |



следовательно, система уравнений для определения координат экстремальной точки имеет вид:
Эта система также имеет четыре решения:
|
Точка |
|||
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |