Высшая математика
Категория реферата: Рефераты по математике
Теги реферата: рефератов, курсовые работы скачать бесплатно
Добавил(а) на сайт: Ермолин.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата
Производная обратной ф-ции
Применение 1й пр-ной в исслед. ф-ций
Все применения базируются на опред-нии пр-ной, как предела разностного отношения, а также на сл-щей т-ме.
Т-ма Ферма. Если диф. на интервале (a,b) f(x) имеет в т-ке ч0 локальный экстремум, то пр-ная этой ф-ции обращается в 0, т.е. f‘(x0)=0 (8). Это необходимое усл. локал. экстр., но недостаточное.
Опр. Все т-ки в которых пр-ная ф-ции f(x) обращается в 0 наз-ся крит. т-ми f(x). Из т-мы Ферма => экстремум надо искать только через крит. т-ки.
Т-ма Коши. Пусть ф-ции f(x) и g(x) непрерывны на [a,b] и диф. на (a,b). Пусть кроме того, g‘(x)¹0, тогда $ т-ка cÎ(a,b) такая, что справедлива ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c)
Интервалы монотонности ф-ции
Т-ма. Пусть f(x) диффер. На интервале (a,b), тогда справедливы сл. утверждения f(x) монотонно возр. (убывает) на интервале (a,b) тогда, когда f‘(x)³0 на интервале (a,b) и f‘(x)>0 (f‘(x)<0), то строго возр. (убыв) на (a,b).
хÎ интерв. монотонно убывает, касательная имеет тупой угол наклона f‘(x1)<0 для x2 противоположная ситуация.
Т-ма Логранджа. Пусть ф-ция f(x) непрер. на отрезке [a,b] и диф. на интервале (a,b), тогда " т. х и x+Dx Î [a,b] $ т-ка С лежащая между х и х+Dх такая что спаведлива ф-ла (f(x+Dx)-f(x))=f(c)*Dx (7) => при сравнении с ф-лой приращения ф-ций с диф. заметим, что (7) явл. точной ф-лой, однако теперь пр-ная фолжна считаться в некоторой средней т-ке С «алгоритм» выбора которой неизвестен. Крайнее значение (a,b) не запрещены.
Придадим ф-ле (7) классический вид => x=a x+Dx=b+> тогда ф-ла (7)=(f(b)-f(a))/(b-a)=f‘(c) (7‘) – ф-ла конечных приращений Логранджа.
(f(b)-f(a))/(b-a)=f‘(c) (1)
Док-во сводится к сведению к т-ме Ролля. Р-рим вспом. ф-цию g(x)=f(x)-f(a)-(f(b)-f(a))/(b-a) * (x-a)
Пусть ф-ция g(x) удовл. всем усл. т-мы Ролля на [a,b]
А)Непрерывна на [a,b]
Б) Дифференц. на (a,b)
В) g(a)=g(b)=0
Все усл. Ролля соблюдены, поэтому $ т-ка С на (a,b) g‘(c)=0 g‘(c)=f‘(x)-(f(b)-f(a))/(b-a). Ф-ла (1) наз-ся ф-лой конечных приращений.
Т-ма Ролля. Пусть ф-ция f(x) удовл. сл. усл.
А)Непрерывна на [a,b]
Б) Дифференц. на (a,b)
В) принимает на коцах отрезков равные значения f(a)=f(b), тогда на (a,b) $ т-ка такая что f‘(c)=0, т.е. с-крит. т-ка.
Док-во. Р-рим сначала, тривиальный случай, f(x) постоянная на [a,b] (f(a)=f(b)), тогда f‘(x)=0 $ x Î (a,b), любую т-ку можно взять в кач-ве с. Пусть f¹ const на [a,b], т.к. она непрер. на этом отрезке, то по т-ме Вейерштрасса она достигает своего экстрем. на этом отрезке и max и min. Поскольку f принимает равные знач. в гранич. т-ках, то хотя бы 1- экстр. – max или min обязательно достигается во внутр. т-ке. сÎ(a,b) (в противном случае f=const), то по т-ме Ферма, тогда f‘(c)=0, что и требовалось д-ть.
Т-ма Тейлора. «О приближении гладкой ф-ци к полиномам»
Опр. Пусть ф-ция f(x) имеет в т-ке а и некоторой ее окрестности пр-ные порядка n+1. Пусть х - любое значение аргумента из указанной окрестности, х¹а. Тогда между т-ми а и х надутся т-ка e такая, что справедлива ф-ла Тейлора. f(x)=f(a)+f‘(a)/1!(x+a)+ f‘‘(a)/2!(x+a)^2+f^(n)(а)/n!+f^(n+1)(e)/(n+1)!(x-a)^(n+1).
Рекомендуем скачать другие рефераты по теме: сочинение на тему зима, капитанская дочка сочинение.
Предыдущая страница реферата | 7 8 9 10 11 12 13 14 15 16 17 | Следующая страница реферата