Эволюция энергетических процессов у эубактерий
Категория реферата: Рефераты по науке и технике
Теги реферата: антикризисное управление предприятием, большие рефераты
Добавил(а) на сайт: Arkadij.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
3-ФГА + НАД+ + ФН ® 1,3-ФГК + НАД-H2.
3-ФГА служит донором электронов, которые переходят на НАД+ функционирующий в качестве переносчика электронов от 3-ФГА к пировиноградной кислоте. Образование последней происходит на более поздних этапах гликолитического пути. Итак, альдегидная группа 3-ФГА окисляется до карбоксильной группы. Однако вместо свободной карбоновой кислоты образуется смешанный ангидрид фосфорной кислоты и карбоксильной группы 3-ФГК — 1,3-ФГК. Реакция окисления 3-ФГА до 1,3-ФГК с помощью НАД-зависимой 3-ФГА-дегидрогеназы состоит из нескольких этапов, в результате чего энергия, освобождающаяся при окислении 3-ФГА, запасается в макроэргической фосфатной связи у первого углеродного атома 1,3-ФГК. 1,3-ФГК реагирует далее с АДФ, отдавая высокоэнергетическую фосфатную группу, что приводит к синтезу молекулы АТФ. Таким образом, энергия, высвободившаяся при окислении альдегидной группы, оказывается запасенной в молекуле АТФ.
42 Если исходным субстратом служит полисахарид, например гликоген или крахмал, для активирования глюкозного остатка на подготовительной стадии гликолитического пути затрачивается только 1 молекула АТФ.
Итак, произошло образование 3-ФГК. Теперь можно подвести некоторые итоги. Клетка на этом этапе "вернула" свои энергетические затраты: 2 молекулы АТФ были затрачены и 2 молекулы АТФ синтезировались на 1 молекулу глюкозы. На этом же этапе в реакции окисления 3-ФГА до 1,3-ФГК и образования АТФ имеет место первое субстратное фосфорилирование. Энергия освобождается и запасается в макроэргических фосфатных связях АТФ в процессе перестройки сбраживаемого субстрата при участии ферментов. Реакция, ведущая к субстратному фосфорилированию, может быть проведена в пробирке. Все необходимые для этого компоненты известны и получены в чистом виде. Возможность осуществления реакции в пробирке указывает на то, что фермент, катализирующий ее, не связан с клеточными структурами. Первое субстратное фосфорилирование носит еще название фосфорилирования на уровне 3-ФГА.
После образования 3-ФГК фосфатная группа из третьего положения переносится во второе. Далее происходит отщепление молекулы воды от второго и третьего атомов углерода 2-ФГК, катализируемое ферментом енолазой, и образуется фосфоенолпировиноградная кислота. В результате происшедшей дегидратации молекулы 2-ФГК степень окисления ее второго углеродного атома увеличивается, а третьего — уменьшается. Таким образом, данная реакция по существу представляет собой внутримолекулярный окислительно-восстановительный процесс. Дегидратация молекулы 2-ФГК, приводящая к образованию ФЕП, сопровождается перераспределением энергии внутри молекулы, в результате чего фосфатная связь у второго углеродного атома из низкоэнергетической в молекуле 2-ФГК превращается в высокоэнергетическую в молекуле ФЕП.
Молекула ФЕП становится донором богатой энергией фосфатной группы, которая переносится на АДФ с помощью фермента пируваткиназы. Таким образом, в процессе превращения 2-ФГК в пировиноградную кислоту имеет место высвобождение энергии и запасание ее в молекуле АТФ. Это второе субстратное фосфорилирование. По ряду черт оно отличается от первого субстратного фосфорилирования: 1) если в первом случае образование макроэргической фосфатной связи протекало одновременно с присоединением к субстрату фосфатной группы, то во втором — фосфатная группа была присоединена к молекуле субстрата задолго до этого события; 2) первое субстратное фосфорилирование связано с реакцией окисления, приводящей к тому, что от молекулы 3-ФГА отрываются два электрона и переходят на НАД+, т. е. молекула 3-ФГА служит донором электронов, но вопрос о конечном акцепторе их на этом этапе не решен. Напротив, при втором субстратном фосфорилировании, связанном с реакцией дегидратации молекулы 2-ФГК, решается проблема и донора и акцептора. Здесь в результате внутримолекулярного окислительно-восстановительного процесса одна молекула и донирует и акцептирует электроны.
В процессе второго субстратного фосфорилирования образуется еще молекула АТФ; в итоге общий энергетический выигрыш процесса составляет 2 молекулы АТФ на 1 молекулу глюкозы. Такова энергетическая сторона процесса гомоферментативного молочнокислого брожения.
Однако осталась еще проблема восстановленного переносчика — НАД-H2, образованного в реакции окисления 3-ФГА. Чтобы процесс продолжался, в метаболический поток необходимо вернуть этот метаболит в окисленном виде (НАД+), т. е. решить проблему конечного акцептора. Как же она решается в данном случае? Результатом рассмотренного выше процесса, помимо его энергетического итога, является образование 2 молекул пировиноградной кислоты и 2 молекул НАД-H2 на 1 молекулу сброженной гексозы. Молекула пировиноградной кислоты по своему химическому строению — достаточно окисленное соединение и может служить акцептором электронов. В этом случае донор-акцепторная проблема решена самым простым способом: 2 электрона переносятся с НАД-H2 на молекулу пировиноградной кислоты, что приводит к образованию молочной кислоты. Суммарно процесс можно выразить в виде следующего уравнения:
глюкоза + 2ФН + 2АДФ ® 2 молочная кислота + 2АТФ + 2H2O.
Гомоферментативное молочнокислое брожение представляет собой энергетическую сторону образа жизни группы гомоферментативных молочнокислых бактерий. Черты древности этой группы видны не только в процессе добывания ее представителями энергии, но и в других сторонах их метаболизма, о чем будет сказано в разделе, посвященном краткой характеристике этих бактерий. Сейчас же остается подвести некоторые итоги рассмотренного процесса и оценить его "судьбу". В процессе гомоферментативного молочнокислого брожения имеют место 3 типа химических превращений:
перестройка углеродного скелета исходного субстрата; окислительно-восстановительные превращения; образование АТФ.Энергетический выход процесса таков: образование 2 молекул АТФ на молекулу глюкозы43. Энергетическая эффективность процесса, т. е. эффективность запасания выделяемой свободной энергии в молекулах АТФ, составляет примерно 40%. Энергия запасается только в реакциях субстратного фосфорилирования. Как можно видеть из суммирования энергетических характеристик процесса, низкий энергетический выход сочетается в нем с высокой энергетической эффективностью, а в основе всего лежат простые механизмы получения энергии. Окислительно-восстановительные превращения имеют место на двух этапах процесса, именно они приводят к получению клеткой энергии. Если оценить общин окислительно-восстановительный .баланс процесса (C6H12O6 ® 2C3H6O3), можно видеть, что суммарного изменения степени окисленности при этом не происходит (если сравнить степень окисленности отдельных углеродных атомов глюкозы и молочной кислоты, получается другая картина). Это результат того, что процесс "замкнут на себя", т. е. субстрат является и источником веществ — доноров электронов и источником веществ — их акцепторов. "Замкнутость" процесса приводит к ограничению его окислительных и, следовательно, энергетических возможностей (но в данном конкретном случае еще не исчерпывает их). Все это, вместе взятое, определило "судьбу" гомоферментативного молочнокислого брожения.
43 Если исходный субстрат — полисахарид, образуются 3 молекулы АТФ на 1 молекулу сброженной глюкозы.
Возникнув как первый, далекий от совершенства энергетический процесс, гомоферментативное молочнокислое брожение не было потом отброшено в процессе эволюции. Наоборот, оно закрепилось и существует сейчас в виде гликолиза у подавляющего большинства прокариот, дрожжей, грибов, а также у высших животных и растений, но только как первый этап более совершенного энергетического процесса, сформировавшегося в результате последующего развития способов получения энергии живыми организмами. Чем объясняется такая судьба гомоферментативного молочнокислого брожения? Вероятно, оказалось выгодным использовать его в качестве первого подготовительного этапа по следующим причинам: 1) высокая энергетическая эффективность (не путать с энергетическим выходом процесса!); 2) простота механизмов получения энергии; 3) перестройка исходного субстрата в форму, метаболически удобную для последующих превращений.
ГОМОФЕРМЕНТАТИВНЫЕ МОЛОЧНОКИСЛЫЕ БАКТЕРИИ
Гомоферментативное молочнокислое брожение, в основе которого лежит гликолитический путь разложения глюкозы, является единственным способом получения энергии для группы эубактерий, которые при сбраживании углеводов превращают в молочную кислоту от 85 до 90% сахара среды. Бактерии, входящие в данную группу, морфологически различны. Это кокки, относящиеся к родам Streptococcus и Pediococcus, а также длинные или короткие палочки из рода Lactobacillus. Последний подразделяется на три подрода. Бактерии, включенные в два из них (Thermobacterium, Streptobacterium), также осуществляют гомоферментативное молочнокислое брожение. Все бактерии этой группы положительно окрашиваются по Граму, не образуют спор, неподвижны. Группа весьма гетерогенна в отношении нуклеотидного состава ДНК: молярное содержание ГЦ-пар оснований колеблется от 32 до 51%. Значительные колебания по этому признаку характерны и для бактерий, объединенных в роды и даже подроды.
Лактатдегидрогеназа, катализирующая превращение пирувата в лактат, стереоспецифична. У разных видов она содержится в виде определенных оптических изомеров; в зависимости от этого бактерии продуцируют D- или L-форму молочной кислоты. Те из них, которые образуют смесь D- и L-форм. содержат или две формы фермента, различающиеся стереоспецифичностью, или лактатрацемазу. Некоторые признаки, характерные для эубактерий, осуществляющих гомоферментативное молочнокислое брожение, представлены в табл. 15.
Таблица 15. Характеристика таксономических групп гомоферментативных молочнокислых бактерий
Род и подрод бактерий | Морфология и особенности деления клеток | Молярное содержание ГЦ в ДНК, % | Конфигурация молочной кислоты | Наиболее распространенные виды |
Род Streptococcus | сферические или овальные клетки; делятся в одной плоскости, в результате образуются пары или цепочки клеток | 33—44 |
S. faecalis S. lactis |
|
Род Pediococcus | кокки; делятся в двух плоскостях, в результате образуются тетрады клеток | 33—44 | DL | P. cerevisiae |
Род Lactobacillus Подрод Thermobacterium Подрод Streptobacterium* |
палочки; делятся в одной плоскости, образуют пары или цепочки клеток |
35—51 32—46 |
L D D DL DL L |
L. delbruckii L. bulgaricus L. lactis L. jensenii L. plantarum L. casei |
* Виды, относящиеся к этому подроду, расщепляют пентозы по окислительному пентозофосфатному пути, осуществляя гетероферментативное молочнокислое брожение. Поэтому они не являются облигатно гомоферментативными молочнокислыми бактериями.
У этой группы эубактерий молекулярный кислород не включается в энергетический метаболизм, но они способны расти в присутствии O2, т. е. являются аэротолерантными анаэробами44. В их клетках в значительном количестве содержатся флавиновыe ферменты, с помощью которых происходит восстановление молекулярного кислорода до H2O2. Из-за неспособности молочнокислых бактерий синтезировать гемовую группу у них отсутствует каталаза — фермент, катализирующий разложение перекиси водорода, поэтому последняя может накапливаться в клетке. Существующие механизмы защиты от молекулярного кислорода и его производных у этой группы эубактерий изложены в гл. 15.
44 Некоторые авторы представителей рода Lactobacillus относят к микроаэрофилам (см. сноску на с. 127).
Особенностями конструктивного метаболизма гомоферментативных молочнокислых бактерий являются слабо развитые биосинтетические способности, что выражается в большой зависимости их роста от наличия в питательной среде готовых органических веществ (аминокислоты, витамины группы В, пурины, пиримидины). В качестве источника углерода молочнокислые бактерии используют лактозу (молочный сахар) или мальтозу (растительный сахар, образующийся при гидролизе крахмала). Могут они также использовать некоторые пентозы, сахароспирты и органические кислоты. Из всех известных непатогенных прокариот молочнокислые бактерии отличаются наибольшей требовательностью к субстрату. Зависимость этих бактерий от наличия готовых органических веществ среды указывает на примитивность в целом их конструктивного метаболизма.
Молочнокислые бактерии распространены там, где они могут обеспечить свои высокие потребности в питательных веществах и где имеются большие количества углеводов, переработка которых дает им необходимую для роста энергию. Их много в молоке и молочных продуктах, на поверхности растений и в местах разложения растительных остатков; обнаружены они в пищеварительном тракте и на слизистых оболочках животных и человека.
Молочнокислым бактериям принадлежит главная роль в осуществлении ряда процессов, используемых с давних времен для получения различных кисломолочных продуктов, в процессах соления и квашения овощей, силосования кормов. Кефир — продукт совместной деятельности молочнокислых бактерий и дрожжей. Известно много национальных кисломолочных продуктов (кумыс, йогурт и др.), для приготовления которых используют кобылье, верблюжье, овечье, козье молоко, а в качестве закваски — естественно возникшие и сохраняемые комплексы молочнокислых бактерий и дрожжей. Молочнокислые бактерии играют также большую роль в процессе приготовления сыров и сливочного масла. Первый этап производства сыров (створаживание белков молока) осуществляется молочнокислыми бактериями.
Скисание сливок, необходимое для получения сливочного масла, также вызывают бактерии рода Streptococcus. Помимо молочной кислоты некоторые из них образуют ацетоин и диацетил, придающие сливочному маслу характерный запах и вкус Субстратом служит лимонная кислота, содержание которой в молоке может достигать 1 г/л. Реакции, ведущие к образованию этих веществ, начинаются с расщепления лимонной кислоты:
лимонная кислота ® уксусная кислота + щавелевоуксусная кислота
Рекомендуем скачать другие рефераты по теме: реферат реформы, экзамен.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата