Неметаллические материалы
Категория реферата: Рефераты по науке и технике
Теги реферата: реферат революция, bestreferat
Добавил(а) на сайт: Lomovcev.
Предыдущая страница реферата | 10 11 12 13 14 15 16 17 18 19 20 | Следующая страница реферата
Рефераты | Рефераты по науке и технике | Неметаллические материалы |
|||||
титановая |
4,72 |
190-200 |
12 |
_ |
|
стальная |
7,9 |
420 |
20 |
— |
- |
*Температура плавления.
**Температура деструкции
Преимуществом композиционных материалов являются высокие прочность и жесткость (для карбоволокнитов Ơв = 65 - 170 кгс/мм2, Е= 12000 - 18 000 кгс/мм2; для бороволокнитов Ơв = 90 - 175 кгс/мм2, Е = 21400 - 27000 кгс/мм2), хорошее сопротивление хрупкому разрушению, жаропрочность и термическая стабильность. Плотность композиционных материалов составляет от 1,35 до 4,8 г/см3.
Композиционные материалы являются перспективными конструкционными материалами для различных отраслей машиностроения.
Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей (наполнителей) в виде углеродных волокон (карбоволокон).
Углеродные волокна получают термообработкой органических волокон. В зависимости от температуры термообработки и содержащегося углерода волокна подразделяют на частично карбонизованные (900°С, 85-90%), карбонизованные (900-1500°С, 95-99%) и графитированные, (1500 — 3000°С, >99.%). Два последних типа имеют наибольшее значение.
В зависимости от формы исходного сырья углеродные волокна могут быть в виде нитей, жгутов, войлока, тканей; волокна можно перерабатывать на обычном текстильном оборудовании.
Практическое применение нашли вискозные кордные волокна (ВК) и полиакрилонитрильные (П АН-вол окна).
Свойства волокон зависят от термообработки, с увеличением температуры происходит образование гексагональных углеродных слоев, их рост и упорядочение. Структура волокон фибриллярная. Каждая фибрилла состоит из лентообразных микрофибрилл, разделенных узкими и длинными продольными порами.
В результате вытяжки достигается ориентация кристаллитов, что позволяет получать высокопрочные и высокомодульные углеродные волокна.
Обычные углеродные волокна имеют Ơв = 50 - 100 кгс/мм2 и Е = = 2000--7000 кгс/мм2; для высокопрочных и высокомодульных волокон Ơв >150 кгс/мм2 и Е> 15000 кгс/мм2. По удельным прочности (Ơ/р) и жесткости (Е/р) последние превосходят все жаростойкие волокнистые материалы.
Высокая энергия связи С — С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными, покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению, аппретированию, вискеризации.
Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).
В качестве полимерных связующих применяют эпоксидные, фенолоформальдегидные. смолы, полиимиды и др.