Неметаллические материалы
Категория реферата: Рефераты по науке и технике
Теги реферата: реферат революция, bestreferat
Добавил(а) на сайт: Lomovcev.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата
Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-lл на жгуте, вискеризованном нитевидными кристаллами, могут длительно работать при температуре до 200°С.
Карбоволокниты КМУ-3 и КМУ-Зл получают на эпоксианилиноформальдегидном связущем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связущего можно применять при температуре до 300°С [43].
Карбоволокниты отличаются высокой статической и динамической выносливостью (рис. 215), сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойки. После воздействия на воздухе рентгеновского излучения Ơи и Εи почти не изменяются.
Теплопроводность углепластиков в 1,5-2 раза выше, чем у стеклопластиков. Они имеют следующие электрические свойства: р„ = 0,0024 4- 0,0034 Ом-см (вдоль волокон); Е=10 и tg δ = 0,01 (при частоте 1010 Гц).
Карбостекловолокниты содержат наряду с угольными стеклянные, волокна, что удешевляет материал.
Карбоволокниты с углеродной матрицей. Коксованные материалы получаются из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800—1500°С образуются карбонизованные, при 2500-3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме -изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (1100°С и остаточном давлении 20 мм-рт. ст.) метан разлагается, и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.
Карбоволокнит на углеродной матрице типа КУП-ВМ: по значениям прочности и ударной вязкости в 5 —10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).
Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др.
Карбоволокниты с углеродной матрицей применяют для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры, заменяя различные типы графитов.
2. Бороволокниты
Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя — борных волокон.
Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, тепло- и электропроводностью.
Борное волокно получается осаждением бора из газовой фазы на поверхность разогретой вольфрамовой проволоки. Вследствие диффузии и взаимодействия между бором и вольфрамом последний превращается в бориды вольфрама. Таким образом, наружная оболочка волокна состоит из металлического бора, сердечник — из кристаллических боридов переменного состава. Борные волокна имеют d = 90 -- 150 мкм, Ơ„ = 280 - 320 кгс/мм2, г = 0,7 - 0,8%, Е = 39000 -- 40000 кгс/мм2, выпускаются под марками БН и борофил (США). При температуре > 400°С волокна окисляются и требуют нанесения защитных покрытий (карбиды). Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.
Помимо непрерывного борного волокна применяют комплексные боростеклонити, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей. облегчает технологический процесс изготовления бороволокнитов.
В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 300°С .
Бороволокниты обладают высокой усталостной прочностью (до 35 — 40 кгс/мм2), их свойства можно изменять за счет различной укладки упрочнителя. Бороволокниты стойки к воздействию проникающей радиации, к воде, органическим растворителям и горюче-смазочным материалам.
3.Органоволокниты
Представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.
Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости.
Резиновые материалы
1. Общие сведения, состав и классификация резин
Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.
Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку — главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При комнатной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.
Модуль упругости лежит в пределах 0,1 — 1 кгс/мм2, т. е. он в тысячи и десятки тысяч раз .меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона равен 0,4 — 0,5, тогда как для металла эта величина составляет 0,25 — 0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При комнатной температуре время релаксации может составлять-10 ~ 4 с й более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.
Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.
В результате совокупности технических свойств резиновых материалов их применяют для амортизации и демпфирования, уплотнения и герметизации в условиях воздушных и жидкостных сред, химической защиты деталей машин, в производстве тары для хранения масел и горючего, различных трубопроводов (шлангов), для покрышек и камер колес самолетов, автотранспорта и т. д. Номенклатура резиновых изделий насчитывает более 40000 наименований.
Состав и классификация резин. Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки (ингредиенты). Таким образом, резина состоит из каучука и ингредиентов, рассмотренных ниже. 1. Вулканизующие вещества (агенты) участвуют в образовании пространственно-сеточной структуры вулканизата. Обычно в качестве таких веществ применяют серу и селем, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения — тиурам (тиурамовые резины).
Ускорители процесса вулканизации: полисульфиды, окислы свинца, магния и др. влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов.. Ускорители проявляют свою наибольшую активность в присутствии окислов некоторых металлов (цинка и др.), называемых поэтому в составе резиновой смеси активаторами.
Рекомендуем скачать другие рефераты по теме: реферат капитал, рассказы.
Предыдущая страница реферата | 11 12 13 14 15 16 17 18 19 20 21 | Следующая страница реферата