Неметаллические материалы
Категория реферата: Рефераты по науке и технике
Теги реферата: реферат революция, bestreferat
Добавил(а) на сайт: Lomovcev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Рис. 2.1. Диаграмма растяжения стеклообразного полимера
(Qвын.эл- предел вынужденной эластичности):
/ — область упругих деформаций;
Деформация
Деформация
//—область высокоэластической деформации
Рис. 2.2. Влияние температуры на характер кривых напряжение — деформация аморфного термопласта t1 < t2 < t3
Ориентационное упрочнение. Полимеры как в кристаллическом, так и в стеклообразном состоянии могут быть ориентированы. Процесс осуществляется при медленном растяжении полимеров, находящихся в высокоэластическом или вязкотекучем состоянии. Макромолекулы и элементы надмолекулярных структур ориентируются в силовом поле, приобретают упорядоченную структуру по сравнению с неориентированными. После того как достигнута желаемая степень ориентации, температура снижается ниже tс, и полученная структура фиксируется.
В процессе ориентации возрастает межмолекулярное взаимодействие, что приводит к повышению tc, снижению tхр и особенно к повышению механической прочности. Свойства материала получаются анизотропными. Различают одноосную ориентацию, применяемую для получения волокон, пленок, труб, и многоосную, производимую одновременно в нескольких направлениях (например, в процессе получения пленок).
Прочность при разрыве в направлении ориентации увеличивается в 2-5 раз, в перпендикулярном направлении прочность уменьшается и составляет 30-50% прочности исходного материала. Модуль упругости в направлении одноосной ориентации увеличивается примерно в 2 раза. Высокая прочность сочетается с достаточной упругостью, что характерно только для высокополимеров (звенья макромолекул могут обратимо перемещаться без разрушения материала).
Некоторые свойства ориентированных аморфных и кристаллических полимеров одинаковы, однако они различаются фазовым состоянием, поэтому с течением времени у кристаллических полимеров улучшается их структура, а аморфные ориентированные полимеры чаще всего в дальнейшем дезориентируются (особенно при нагреваний).
Релаксационные свойства полимеров. Механические свойства полимеров зависят от времени действия и скорости приложения нагрузок. Это обусловлено особенностями строения макромолекул. Под действием приложенных напряжений происходит как распрямление и раскручивание цепей (меняется их конформация), так и перемещение макромолекул, пачек и других надмолекулярных структур. Все это требует определенного времени, и установление равновесия (релаксация) достигается не сразу. Например, для полимера в высокоэластическом состоянии время релаксации при конформационных изменениях равно 10-4 - 10-6 с, а время релаксации при перемещении самих макромолекул и надмолекулярных структур очень велико и составляет сутки и месяцы. Примером может служить волокно, являющееся ориентированным полимером. В обычных условиях его молекулы очень долго не переходят в равновесное неориентированное состояние; поэтому такие процессы релаксации обычно не учитываются. Однако это волокно достаточно упруго, так как при растяжении и сокращении проявляются быстрые релаксационные процессы изменения конформаций. Кинетика релаксационного процесса выражается формулой :
∆X=(∆X)0e-(τ / τp)
где ∆х и (∆х)0 - отклонения измеряемой величины от равновесного значения в данный момент времени т и в начальный момент т = 0; т„ — время релаксации (для простых релаксирующих систем величина постоянная). При τ = τр величина ∆х = (∆х)0/е (т. е. за время релаксации ∆х уменьшается в 2,72 раза). По величине τ р обычно судят о скорости релаксационных процессов.
Для эластичных полимеров характерно явление гистерезиса. У этих материалов кривые зависимости деформации от напряжения при нагружении и разгрузке образца не совпадают (происходят релаксационные процессы). Релаксация деформации - это изменение относительного удлинения (или сжатия) образца при постоянном напряжении во времени. При приложении силы образец находится в неравновесном состоянии, и со временем начинается релаксация; через какое-то время деформация достигает равновесного значения (равновесие между а = const и тепловым движением). После снятия нагрузки образец начинает восстанавливать свою первоначальную форму (упругое последействие). Удлинение происходит в результате распрямления, раскручивания цепей (высокоэластической деформации) и перемещения макромолекул друг относительно друга (вязкого течения). Чем больше время испытания, тем больше вязкое течение. .Деформация в этом случае состоит из обратимой и необратимой. Эти медленно протекающие процессы изменения формы образца называют ползучестью.
Рис. 3. Влияние скорости (W) приложения нагрузки на характер кривых растяжения (W1 > W2 > W3)
Деформация
Релаксацией напряжения называется уменьшение напряжения до равновесного значения при условии неизменности деформации. С течением времени величина приложенного первоначального напряжения будет постепенно уменьшаться, так как в образце под действием теплового движения начнется самопроизвольная конформационная перестройка, а в линейном полимере будет происходить перемещение макромолекул. Для сетчатых полимеров соотношение указанных процессов будет зависеть от частоты сетки.
Для всех полимеров характерно повышение предела прочности с увеличением скорости нагружения (рис. 3). При этом уменьшается влияние неупругих деформаций. С уменьшением скорости нагружения влияние неупругих деформаций возрастает.
С. Н. Журковым разработана флуктуационная теория прочности полимеров, согласно которой разрыв полимерного материала под действием внешних сил является процессом, протекающим в зависимости от времени. Скорость его определяется соотношением энергии межмолекулярных связей и тепловых флуктуации. Разрыв происходит вследствие тепловых флуктуации, а растягивающее напряжение способствует флуктуационному процессу. Разрыв всегда происходит по химическим связям. Любое упрочнение структуры полимера приводит к более согласованному сопротивлению линейных молекул их разрыву, поэтому, например, при ориентации прочность материала повышается. При деформации полимерные материалы так же, как и металлы, обладают статической и динамической выносливостью.
Следовательно, чем выше напряжение или температура, тем меньше Долговечность.
Температурно-временная зависимость прочности для полимерных материалов выражена сильнее, чем для металлов, и имеет большое значение при оценке их свойств.
Рекомендуем скачать другие рефераты по теме: реферат капитал, рассказы.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата