Неметаллические материалы
Категория реферата: Рефераты по науке и технике
Теги реферата: реферат революция, bestreferat
Добавил(а) на сайт: Lomovcev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Старение полимеров. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менее существенно на старение влияет, влага. Различают старение тепловое, световое, озонное и атмосферное.
Испытание на старение проводится как в естественных условиях, так и искусственными ускоренными методами. Атмосферное старение проводится в различных климатических условиях в течение нескольких лет. Тепловое старение происходит при температуре на 50°С ниже температуры плавления (разложения) полимера. Продолжительность испытания определяется временем, необходимым для снижения основных показателей на 50% от исходных.
Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием полимера. Обычно старение является результатом окисления полимера атмосферным кислородом. Если преобладает деструкция, то полимер размягчается, выделяются летучие вещества (например, натуральный каучук); при структурировании повышаются твердость, хрупкость, наблюдается потеря эластичности (бутадиеновый каучук, полистирол). При высоких температурах (200 — 500°С и выше) происходит термическое разложение органических полимеров, причем пиролиз полимеров, сопровождаемый испарением летучих веществ, не является поверхностным явлением (как при простом испарении неполимерных веществ); во всем объеме образца образуются молекулы, способные испаряться.
Пластические массы
Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.
I. Состав, классификация и свойства пластмасс
Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используются синтетические смолы, реже применяются эфиры целлюлозы. Многие пластмассы, главным образом термопластичные, состоят из одного связующего вещества, например полиэтилен, органические стекла и др.
Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с высокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сообщает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей).
Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.
По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты) — на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1-3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).
Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние (пространственная структура) хрупки, часто дают большую усадку (до 10—15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.
По виду наполнителя пластмассы делят на порошковые (пресс-порошки) с наполнителями в виде древесной муки, сульфитной целлюлозы, графита, талька, измельченных стекла, мрамора, асбеста, слюды, пропитанных связующими (часто их называют карболитами); волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); крошкообразные (наполнитель в виде кусочков ткани или древесного шпона, пропитанных связующим); газонаполненные (наполнитель - воздух или нейтральные газы). В зависимости от структуры последние подразделяют на пенопласты и поропласты.
Современные композиционные материалы содержат в качестве наполнителей угольные и графитовые волокна (карбоволокниты); волокна бора (бороволокниты).
По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и несидовые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоративные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами: например, полиамиды применяют в качестве антифрикционных и электроизоляционных материалов и т. д.
Пластмассы по своим физико-механическим и технологическим свойствам являются наиболее прогрессивными и часто незаменимыми материалами для машиностроения.
Недостатками пластмасс являются невысокая теплостойкость, низкие модуль упругости и ударная вязкость по сравнению с металлами и сплавами, а для некоторых пластмасс склонность к старению.
2. Термопластичные пластмассы
В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы. Термопластичные пластмассы применяют в качестве прозрачных органических стекол, высоко- и низкочастотных диэлектриков, химически стойких материалов; из этих пластмасс изготовляют тонкие пленки и волокна. Детали, выполненные из таких материалов, имеют ограниченную рабочую температуру. Обычно при нагреве выше 60-70°С начинается резкое снижение их физико-механических характеристик, хотя более теплостойкие пластмассы могут работать при температуре 15О-25О°С. Термостойкие полимеры с жесткими цепями и циклические структуры устойчивы до 400-600°С.
Неполярные термопластичные пластмассы. К неполярным пластикам относятся полиэтилен, полипропилен, полистирол и фторопласт-4.
Полиэтилен (- СН2 - СН2 — )„ — продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам.
По плотности полиэтилен подразделяют на полиэтилен низкой плотности, получаемый в процессе полимеризации при высоком давлении (ПЭВД), содержащий 55-65% кристаллической фазы, и полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД), имеющий кристалличность до 74 — 95%.
Чем выше плотность и кристалличность полиэтилена, тем выше механическая прочность и теплостойкость материала.. Теплостойкость полиэтилена невысока, поэтому длительно его можно применять при температурах до 60-100°С. Морозостойкость полиэтилена достигает — 70°С и ниже. Полиэтилен химически стоек, и при комнатной температуре нерастворим ни в одном из известных растворителей. При нагревании устойчив к воде, к ацетону, к спирту.
Недостатком полиэтилена является его подверженность старению. Для защиты от старения в полиэтилен вводят стабилизаторы и ингибиторы (2-3% сажи замедляют процессы старения в 30 раз).
Под действием радиоактивного облучения полиэтилен твердеет, приобретает большую прочность и теплостойкость.
Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей (вентили, контейнеры и др.), полиэтиленовых пленок для изоляции проводов и кабелей, чехлов, остекления парников, облицовки водоемов; кроме того, полиэтилен служит покрытием на металлах для защиты от коррозии, влаги, электрического тока и др.
Полипропилен (— СН2 - СНСН3 - ),, - является производной этилена. Применяя металлоорганические катализаторы, получают полипропилен, содержащий значительное количество стереорегулярной структуры. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150°С. Полипропиленовые пленки прочны и более газонепроницаемы, чем полиэтиленовые, а волокна эластичны, прочны и химически стойки. Нестабилизированный полипропилен подвержен быстрому старению. Недостатком пропилена является его невысокая морозостойкость (— 10 - 20°С).
Полипропилен применяют для изготовления труб, конструкционных деталей автомобилей, мотоциклов, холодильников, корпусов насосов, различных емкостей и др.Пленки используют в тех же целях, что и полиэтиленовые.
Рекомендуем скачать другие рефераты по теме: реферат капитал, рассказы.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата