Обобщенный принцип наименьшего действия
Категория реферата: Рефераты по науке и технике
Теги реферата: шпаргалки бесплатно, конспект урока по русскому
Добавил(а) на сайт: Agar'.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
(1.4)
При любом значении a существует интеграл
и предел формулы (1.4) при a- 0 является d -функцией, т.е.
(1.5)
Так определенная (1.4)-(1.5) d -функция является пределом непрерывного графика прямоугольного импульса высотой 1/2a и шириной 2a. При a- 0 высота "стенок" прямоугольного импульса неограниченно возрастает, а ширина импульса стремится к 0. В пределе "стенки" "слипаются" в один луч - d -функцию, расположенную в начале координат.
При прохождении функции в d a(x) по направлению кривой от к "стенки" прямоугольного импульса проходят в противоположных направлениях, поэтому d -функция (состоящая из двух "слипшихся" "стенок") одновременно направлена в противоположных направлениях. (Одну кривую, которую проходят в разных направлениях, считают различными кривыми [8]).
Определенная выше d -функция имеет наглядное представление в виде луча - положительной полуоси ординат. Имея бесконечную высоту и нулевую ширину, d -функция ограничивает единичную площадь (неопределенность типа) и обладает двойной направленностью.
Следует отметить, что в приведенном определении d -функция не рассматривается как "равная нулю при всех и обращающаяся в точке x=0 в бесконечность" [8]. Теперь d -функция рассматривается как луч - линейное множество, имеющее мощность континуума.
Поскольку уточненное определение d -функции не затрагивает ее определения как функционала на пространстве D, все свойства d -функции, рассматриваемой как сингулярная обобщенная функция, сохраняются.
Производная d -функции имеет наглядное представление в виде оси ординат, обладает двойной направленностью в каждой из полуплоскостей y0 и пересекает ось абсцисс (все это в одной точке x=0).
Далее все производные понимаются в обобщенном смысле [6-9], т.е. в виде свертки с производными сингулярной d -функции.
Теория обобщенных функций и разработанная техника вычислений их производных [6-9] позволяют распространить необходимые условия экстремума на континуально многозначные (так называемые разрывные) функции многих действительных переменных.
2. Вариационные задачи с разрывным интегрантом
Многие прикладные оптимизационные задачи сводятся к поиску экстремумов интегральных функционалов с разрывным интегрантом. Здесь "разрывной" понимается так: не обязательно разрывной. Обычно, в том числе и в монографиях [3, 5], оптимизационные задачи рассматриваются для функционалов, зависящих от операторов дифференцирования. В работах [10, 11] рассматриваются функционалы, зависящие от интегральных операторов, что существенно расширяет круг решаемых задач.
Будем решать вариационную задачу для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов
(2.1)
где h(t) - экстремаль, относительно которой предполагаем, что.
Функционал качества I может зависеть от нескольких операторов
(2.2)
где F[T ]- интегрант, определяющий связь (композицию) операторов F i в функционале I. Интегрант F[T ] может быть непрерывным, гладким, негладким и даже континуально многозначным или разрывным.
Оптимизации методами негладкого анализа посвящена монография Френка Кларка [3], но методику Кларка применить к функционалам, зависящим от интегральных операторов, нельзя, как нельзя ее применять и для функционалов с континуально многозначным или разрывным интегрантом. Кроме того, экстремали у Кларка предполагаются абсолютно непрерывными. Все это несколько сужает область применения негладкой оптимизации Кларка - теории, впитавшей в себя достижения его предшественников, на кoторых он ссылается в своей монографии. Поскольку оптимизируемый функционал зависит от интегральных операторов, метод, использованный в монографии [5], неприменим тоже. В то же время для решения сформулированной задачи достаточно методов вариационного исчисления, теории обобщенных функций и теоремы Фубини [8], поэтому будем поступать так.
Негладкий, континуально многозначный или разрывной интегрант можно представить с помощью функции включения H(x) (1.2) или ее производных, т.е. d -функции (1.5) и ее производных, используя их фильтрующие свойства. При варьировании функционала I все производные будем понимать в обобщенном смысле
.
Заметим, что этот интеграл теперь имеет математический и физический смыл, а не является "просто символом", как при классическом определении d -функции.
По общему правилу [9-12] введем однопараметрическое семейство кривых , где d h(t)-произвольная функция из Lp[a,b], a - малый параметр. Подставляя в операторы (2.1), а операторы (2.1) в функционал (2.2) и дифференцируя I по a , получим вариацию функционала d I и приравняем ее нулю:
Рекомендуем скачать другие рефераты по теме: менеджмент, сочинение бульба.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата