Педагогика в начальных классах
Категория реферата: Рефераты по педагогике
Теги реферата: сочинение 6 класс, реферат на тему життя
Добавил(а) на сайт: Яшков.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
IV Практический способ;
Так же текстовые задачи на уроках математики в начальных классах могут быть использованы для самых разных целей: для подготовки к ведению новых понятий (в частности, арифметических действий); для ознакомления с новыми понятиями, свойствами понятий, для углубления и расширения формируемых математических знаний и умений; для вычислительных навыков; для обучения методам и приемам решения задач на разных этапах этого обучения и для многих других целей. Очевидно, что и методика работы с задачей на уроке должна определяться прежде всего тем, с какой целью эта задача включена в урок.
Анализ практики показывает, что далеко не всегда характер работы с задачей на уроке соответствует той цели, ради достижения которой она рассматривается на уроке. Чтобы решить данные цели, мне удалось выделить возможные виды работы с задачами на уроке математике, которые хоть чем-то отличаются друг от друга. Главное – представить все многообразие возможных ситуаций с задачами на уроке, дав тем самым учителю право и возможность выбирать.
Начальная школа все дальше и дальше уходит от традиционной методики математики. Появляются различные типы школ, вводятся альтернативные программы и учебники.
Наиболее распространенной среди альтернативных систем является
дидактическая система, разработанная под руководством академика Л.В.
Занкова.
Хотелось бы обратить внимание на то, что значительному большинству учителей, студентов (даже те, кто прослушал курс переподготовки, где рассматривались и раскрывались принципы обучения, приемы и методы работы) нужна основательная помощь, которая заключалась бы в конкретизации методических приемов и методов работы, ибо отсутствие таковых приводит к противоречию между предлагаемыми принципами и их реализации на практике.
И также хотелось бы проанализировать некоторые затруднения, возникающие у учителя и учащегося при решении текстовых задач.
Но кроме системы Л.В. Занкова существует еще система Д.Б. Эльконина
и В.В. Давыдова. Эта система по своей сути также сложна и вызывает
затруднения у учителей и учащихся. При решении задач возникает много
трудностей, порой кажется, что невозможно составить краткую запись задачи, а о решении и речи не может быть. Я хотела бы помочь разрешить все
затруднения при решении текстовых задач в системе Д.Б. Эльконина–В.В.
Давыдова.
Но хотелось бы добавить, что какую бы задачу мы не решали, во всех случаях это очень трудное дело.
1. Теоретическая часть.
1.1 Ознакомление с текстовыми задачами.
В начальном обучении математике велика роль текстовых задач. Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащегося. Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о ее структуре, умел решать такие задачи различными способами. Существуют простые и составные задачи. Задачи, которые решаются в одно действие называются простыми задачи, решающиеся в два и более – составные.
Текстовая задача есть описание некоторой ситуации (ситуаций) на естественном языке с требованием дать количественную характеристику какого- либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между ее компонентами или определить вид этого отношения.
Любая текстовая задача состоит из двух частей: условия и требования
(вопроса).
В условии сообщаются сведения об объектах и некоторых величинах, характеризующих данные объекты, об известных и неизвестных значениях этих величин, об отношениях между ними.
Требования задачи – это указание того, что нужно найти. Оно может быть выражено предложением в повелительной (Найти площадь прямоугольника) или вопросительной форме (Чему равна площадь прямоугольника?).
Рассмотрим задачу: “На тракторе “Кировец” колхозное поле можно вспахать за 10 дней, а на тракторе “Казахстан” – за 15 дней. На вспашку поставлены оба трактора. За сколько дней будет вспахано поле?”
Условие этой задачи. “На тракторе “Кировец” колхозное поле можно вспахать за 10 дней, а на тракторе “Казахстан” – за 15 дней. На вспашку поставлены оба трактора.”. В нем описываются отношения между тремя величинами: объемом работы, производительностью труда и временем выполнения работы, причем в трех различных ситуациях.
Первая ситуация. Некоторый объем работы выполняется только на тракторе “Кировец” с определенной производительностью. Известно значение одной величины, а именно время работы – 10 дней. Значения других величин известны.
Вторая ситуация. Тот же объем работы выполняется только на тракторе
“Казахстан” с определенной производительностью. Известно время работы – 15
дней. Значения других величин неизвестны.
Третья ситуация. Тот же объем работы выполняется двумя тракторами с соответствующей каждому производительностью. Значения всех трех величин неизвестны.
Требование (вопрос) задачи: “За сколько дней будет вспахано поле?”
В нем указывается, что нужно найти одно из неизвестных значений величин, а
именно время совместной работы. Это же требование должно быть
сформулировано в повелительной форме: “Найти число дней, которое
потребуется для вспашки поля двумя тракторами при совместной работе”.
В данной задаче пять неизвестных значений величин, одно из которых заключено в требовании задачи. Это значение величины назовем искомым.
Иногда задачи формулируются таким образом, что часть условия или
все условие включены в одно предложение с требованием задачи. Например, приведенная выше задача может быть дана в такой формулировке: “На тракторе
“Кировец” колхозное поле можно вспахать за 10 дней, а на тракторе на
“Казахстан” – за 15 дней. За сколько дней можно вспахать это поле, если
будут работать оба трактора?” В ней часть условия (“будут работать оба
трактора”) помещена в предложение с требованием задачи. В следующем тексте
все условие делается в одном предложении с вопросом: “За сколько дней
вспашут поле тракторы “Кировец” и “Казахстан”, работая вместе, если на
одном из них поле может быть вспахано за 10 дней, а на другом – за 15
дней?”
В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, т.е. такую, которая не нужна для выполнения требования задачи. Например, в рассмотренной выше задаче для выполнения ее требования не имеют значения названия марок тракторов. Здесь важно лишь, что в задаче речь идет о двух тракторах с разной производительностью.
Рекомендуем скачать другие рефераты по теме: решебник 11, курсовая работа по менеджменту.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата