Расчёт частотных и временных характеристик линейных цепей
Категория реферата: Остальные рефераты
Теги реферата: англия реферат, бесплатные контрольные
Добавил(а) на сайт: Осолодкин.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
|[pic] | | |
| |(30) |[pic] |
|[pic] | | |
| | | |
| |(31) |[pic] |
|[pic] | | |
| |(32) |[pic] |
[pic](33)
Результаты расчётов приведены в таблице 3.1, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.3
|Таблица 3.1 |Расчёт переходной характеристики |
|t, с |h(t) |
|0 |0 |
|1.00e-8 |0.303504193 |
|2.00e-8 |0.489869715 |
|4.00e-8 |0.632067650 |
|5.00e-8 |0.642131278 |
|7.00e-8 |0.624823543 |
|8.00e-8 |0.613243233 |
|1.00e-7 |0.597388596 |
|1.10e-7 |0.593357643 |
|1.30e-7 |0.590241988 |
|1.40e-7 |0.590004903 |
|1.70e-7 |0.590600383 |
|1.90e-7 |0.590939689 |
|2.00e-7 |0.591026845 |
|2.20e-7 |0.591095065 |
|2.30e-7 |0.591100606 |
|2.50e-7 |0.591093538 |
|2.60e-7 |0.591088357 |
|2.80e-7 |0.591081098 |
|3.00e-7 |0.591078184 |
|[pic] |0.591078066 |
Рисунок 3.3 – Переходная характеристика цепи; размерность t – сек, h(t) – безразмерная величина
Как видно из рисунка 3.3, свободные колебания затухают достаточно быстро; при таком масштабе рисунка видны колебания в течение, примерно, одного периода свободных колебаний ([pic]), однако переходной процесс длится немного дольше, а спустя 0,3 мкс колебаниями можно пренебречь т.к. они достаточно малы (см. таблицу 3.1) и считать переходной процесс завершенным.
3.2 Определение импульсной характеристики цепи
Импульсная характеристики цепи:
|[pic] | |[pic] | |
| |(34), | |(35), |
где 1(t) – единичная функция.
Подставляя (33) в (35) находим:
|[pic] | |
| | |
| |(36) |
Результаты расчётов приведены в таблице 3.2, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.4 и 3.5
Рисунок 3.4 – Импульсная характеристика цепи в крупном масштабе;
размерность t – сек, g(t) – безразмерная величина
Оба графика имеют одну и ту же шкалу времени, поэтому можно оценить, насколько быстро затухают колебания, и во сколько раз уменьшается их амплитуда за ничтожный промежуток времени.
|Таблица 3.2 |Расчёт импульсной характеристики |
|t, c |g(t) |
|0 |3.697e7 |
|4.0e-8|2.299e6 |
|6.0e-8|-9.911e5 |
|8.0e-8|-1.066e6 |
|1.0e-7|-5.184e5 |
|1.2e-7|-1.460e5 |
|1.4e-7|-1.503e3 |
|1.8e-7|1.697e4 |
|2.0e-7|6.486e3 |
|2.2e-7|1.167e3 |
|2.4e-7|-412.634 |
|2.6e-7|-482.050 |
|2.8e-7|-240.781 |
|3.0e-7|-70.193 |
|3.2e-7|-2.270 |
|3.6e-7|7.780 |
|3.8e-7|3.053 |
|4.0e-7|0.587 |
|4.2e-7|-0.169 |
|4.4e-7|-0.218 |
|4.6e-7|-0.112 |
|4.8e-7|-0.034 |
|5.0e-7|-1.775e-3 |
|5.4e-7|3.561e-3 |
|5.6e-7|1.434e-3 |
|5.8e-7|2.930e-4 |
|6.0e-7|-6.843e-5 |
|6.2e-7|-9.799e-5 |
|6.4e-7|-5.175e-5 |
|6.6e-7|-1.610e-5 |
|7.0e-7|2.166e-6 |
|7.4e-7|6.730e-7 |
|7.6e-7|1.453e-7 |
|7.8e-7|-2.702e-8 |
|8.0e-7|-4.405e-8 |
|[pic] |0 |
Рисунок 3.5 – Импульсная характеристика в более мелком масштабе
; размерность t – сек, g(t) – безразмерная величина
3.3 Расчет отклика цепи на заданное воздействие методом интеграла Дюамеля
При кусочно-непрерывной форме воздействия отклик необходимо искать для каждого из интервалов времени отдельно.
При применении интеграла Дюамеля с использованием переходной характеристики h(t) отклик:
при [pic]
|[pic], | |
| | |
| |(37) |
Рекомендуем скачать другие рефераты по теме: море реферат, шпори на пятках.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата