Теория организации и системный анализ
Категория реферата: Рефераты по теории организации
Теги реферата: сочинение капитанская, ответы 4 класс
Добавил(а) на сайт: Милана.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Конечно, возможны ситуации, когда все процессы в большой системе описываются известными законами природы и когда можно надеяться, что запись уравнений этих законов даст нам математическую модель хотя бы отдельных элементов или подсистем. Но и в этих, редких, случаях возникают проблемы не только в плане сложности урав-нений, невозможности их аналитического решения (расчета по формулам). Дело в том, что в природе трудно обнаружить примеры “чистого” проявления ее отдельных законов — чаще всего сопутствующие явление факторы “смазывают” теоретическую картину.
Еще одно важное обстоятельство приходится учитывать при математическом моделировании. Стремление к простым, элементарным моделям и вызванное этим игнорирование ряда факторов может сделать модель неадекватной реальному объекту, грубо говоря — сделать ее неправдивой. Снова таки, без активного взаимодействия с технологами, специалистами в области законов функционирования систем данного типа, при системном анализе не обойтись.
В системах экономических, представляющих для вас основной интерес, приходится прибегать большей частью к математическому моделированию, правда в специфическом виде — с использованием не только количественных, но и качественных, а также логических показателей.
Из хорошо себя зарекомендовавших на практике можно упомянуть модели: межотраслевого баланса; роста; планирования эко-номики; прогностические; равновесия и ряд других.
Завершая вопрос о моделировании при выполнении системного анализа, резонно поставить вопрос о соответствии используемых моделей реальности.
Это соответствие или адекватность могут быть очевидными или даже экспериментально проверенными для отдельных элементов системы. Но уже для подсистем, а тем более системы в целом существует возможность серьезной методической ошибки, связанная с объективной невозможность оценить адекватность модели большой системы на логическом уровне.
Иными словами — в реальных системах вполне возможно логическое
обоснование моделей элементов. Эти модели мы как раз и стремимся
строить минимально достаточными, простыми настолько, насколько это
возможно без потери сущности процессов. Но логически осмыслить
взаимодействие десятков, сотен элементов человек уже не в состоянии. И
именно здесь может “сработать” известное в математике следствие из
знаменитой теоремы Гёделя — в сложной системе, полностью изолированной от
внешнего мира, могут существовать истины, положения, выводы вполне
“допустимые” с позиций самой системы, но не имеющие никакого смысла вне
этой системы.
То есть, можно построить логически безупречную модель реальной системы
с использованием моделей элементов и производить анализ такой модели.
Выводы этого анализа будут справедливы для каждого элемента, но ведь
система — это не простая сумма элементов, и ее свойства не просто сумма
свойств элементов.
Отсюда следует вывод — без учета внешней среды выводы о поведении системы, полученные на основе моделирования, могут быть вполне обоснованными при взгляде изнутри системы. Но не исключена и ситуация, когда эти выводы не имеют никакого отношения к системе — при взгляде на нее со стороны внешнего мира.
Для пояснения вернемся к рассмотренному ранее примеру. В нем почти все
элементы были построены на вполне оправданных логических постулатах
(допущениях) типа: если студент Иванов получил оценку “знает” по некоторому
предмету, и посетил все занятия по этому предмету, и управление его
обучением было на уровне “Да” — то вероятность получения им оценки
“знает” будет выше, чем при отсутствии хотя бы одного из этих условий.
Но как на основании системного анализа такой модели ответить на простейший вопрос; каков вклад (хотя бы по шкале “больше-меньше”) каждой из подсистем в полученные фактические результаты сессии? А если есть числовые описания этих вкладов, то каково доверие к ним? Ведь управляющие воздействия на систему обучения часто можно производить только через семестр или год.
Здесь приходит на помощь особый способ моделирования — метод
статистических испытаний (Монте Карло). Суть этого метода проста —
имитируется достаточно долгая “жизнь” модели, несколько сотен семестров для
нашего примера. При этом моделируются и регистрируются случайно меняющиеся
внешние (входные) воздействия на систему. Для каждой из ситуации по
уравнениям модели просчитываются выходные (системные) показатели. Затем
производится обратный расчет — по заданным выходным показателям
производится расчет входных. Конечно, никаких совпадений мы не должны
ожидать — каждый элемент системы при входе “Да” вовсе не обязательно будет
“Да” на выходе.
Но существующие современные методы математической статистики позволяют ответить на вопрос — а можно ли и, с каким доверием, использовать данные моделирования. Если эти показатели доверия для нас достаточны, мы можем использовать модель для ответа на поставленные выше вопросы.
7 Процессы принятия управляющих решений
Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. Надо понять, что эти воздействия не всегда заключаются в изменениях уровня некоторых входных параметров — это могут быть варианты структурных перестроек системы.
Так вот — все это есть. И что же дальше? Пора и управлять, управлять с
единой целью — повышения эффективности функционирования системы
(однокритериальная задача) или с одновременным достижением нескольких
целей (многокритериальная задача).
Естественно, мы ставим вопрос: “А что будет, если …?” и ожидаем
ответа. Но здесь не следует ожидать чуда, нельзя надеяться на однозначный
ответ. Если к примеру, мы интересуемся вопросом — “к чему приведет
увеличение на 20% закупок цемента?”, то мы должны не удивляться, получив
ответ — “Это приведет к увеличению рентабельности производства кирпича на
величину, которая с вероятностью 95% не будет ниже 6% и не будет выше
14%”. И это еще очень содержательный ответ, могут быть и более
“расплывчатые”!
Здесь уместно в последний раз обратиться к примеру с анализом системы обучения и ответить на возможный вопрос — а как же были использованы выводы системного анализа обучения в КГРИ? Ответ одного из соавторов системного анализа, пишущего эти строки, очень краткий — никак.
Можно теперь открыть еще одну (не последнюю) тайну ТССА. Дело в том, что судьбу разработок по управлению большими системами должно решать только
ЛПР, и только этот человек (или коллективный орган) решает вопрос
дальнейшей судьбы итогов системного анализа. Важно отметить, что это
правило никак не связано ни с “важностью” конкретной отрасли
промышленности, торговли или образования, ни с политическими
обстоятельствами, ни с государственным строем. Все намного проще —
мудрость отцов-основателей ТССА проявилась, прежде всего, в том, что
неполнота достоверности выводов системного анализа была ими заранее
оговорена.
Поэтому те, кто ведет системный анализ, не должны претендовать на обязательное использование своих разработок; факты отказа от их использования не есть показатель непригодности этих разработок.
С другой стороны, те, кто принимают решения, должны столь же четко понимать, что расплывчатость выводов ТССА есть неизбежность, она может быть обусловлена не промахами анализа, а самой природой или ошибкой постановки задачи, например, попытки управлять такой гигантской системой, как экономика бывшего СССР.
2 Основные понятия математической статистики
1 Случайные события и величины, их основные характеристики
Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть:
( продукция, т. е. реальные, физически ощутимые предметы с заранее заданным способом их количественного и качественного описания;
Рекомендуем скачать другие рефераты по теме: инвестиции реферат, форма реферата, конспект урока по русскому языку.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата