Теория организации и системный анализ
Категория реферата: Рефераты по теории организации
Теги реферата: сочинение капитанская, ответы 4 класс
Добавил(а) на сайт: Милана.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
( деньги, с единственным способом описания — суммой;
( информация, в виде сообщений о событиях в системе и значениях описывающих ее поведение величин.
Начнем с того, что обратим внимание на тесную (системную!) связь
показателей продукции и денег с информацией об этих показателях. Если
рассматривать некоторую физическую величину, скажем — количество проданных
за день образцов продукции, то сведения об этой величине после продажи
могут быть получены без проблем и достаточно точно или достоверно. Но, уже должно быть ясно, что при системном анализе нас куда больше интересует
будущее — а сколько этой продукции будет продано за день? Этот вопрос
совсем не праздный — наша цель управлять, а по образному выражению
“управлять — значит предвидеть”.
Итак, без предварительной информации, знаний о количественных
показателях в системе нам не обойтись. Величины, которые могут
принимать различные значения в зависимости от внешних по отношению к ним
условий, принято называть случайными (стохастичными по природе). Так, например: пол встреченного нами человека может быть женским или мужским
(дискретная случайная величина); его рост также может быть различным, но
это уже непрерывная случайная величина — с тем или иным количеством
возможных значений (в зависимости от единицы измерения).
Для случайных величин (далее — СВ) приходится использовать особые, статистические методы их описания. В зависимости от типа самой СВ — дискретная или непрерывная это делается по разному.
Дискретное описание заключается в том, что указываются все возможные значения данной величины (например - 7 цветов обычного спектра) и для каждой из них указывается вероятность или частота наблюдений именного этого значения при бесконечно большом числе всех наблюдений.
Можно доказать (и это давно сделано), что при увеличении числа наблюдений в определенных условиях за значениями некоторой дискретной величины частота повторений данного значения будет все больше приближаться к некоторому фиксированному значению — которое и есть вероятность этого значения.
К понятию вероятности значения дискретной СВ можно подойти и иным путем — через случайные события. Это наиболее простое понятие в теории вероятностей и математической статистике — событие с вероятностью 0.5 или 50% в 50 случаях из 100 может произойти или не произойти, если же его вероятность более 0.5 - оно чаще происходит, чем не происходит. События с вероятностью 1[pic]называют достоверными, а с вероятностью 0 — невозможными.
Отсюда простое правило: для случайного события X вероятности P(X)
(событие происходит) и P(X) (событие не происходит), в сумме для простого
события дают 1.
Если мы наблюдаем за сложным событием — например, выпадением чисел
1..6 на верхней грани игральной кости, то можно считать, что такое событие
имеет множество исходов и для каждого из них вероятность составляет 1/6
при симметрии кости.
Если же кость несимметрична, то вероятности отдельных чисел будут разными, но сумма их равна 1.
Стоит только рассматривать итог бросания кости как дискретную случайную величину и мы придем к понятию распределения вероятностей такой величины.
Пусть в результате достаточно большого числа наблюдений за игрой с помощью одной и той же кости мы получили следующие данные:
Таблица 2.1
|Грани |1 |2 |3 |4 |5 |6 |Итого |
|Наблюден|140 |80 |200 |400 |100 |80 | 1000 |
|ия | | | | | | | |
Подобную таблицу наблюдений за СВ часто называют выборочным распределением, а соответствующую ей картинку (диаграмму) — гистограммой.
Рис. 2.1
[pic]
Какую же информацию несет такая табличка или соответствующая ей гистограмма?
Прежде всего, всю — так как иногда и таких данных о значениях случайной величины нет и их приходится либо добывать (эксперимент, моделирование), либо считать исходы такого сложного события равновероятными — по [pic] на любой из исходов.
С другой стороны — очень мало, особенно в цифровом, численном описании
СВ. Как, например, ответить на вопрос: — а сколько в среднем мы выигрываем
за одно бросание кости, если выигрыш соответствует выпавшему числу на
грани?
Нетрудно сосчитать:
1(0.140+2(0.080+3(0.200+4(0.400+5(0.100+6(0.080= 3.48
То, что мы вычислили, называется средним значением случайной величины, если нас интересует прошлое.
Если же мы поставим вопрос иначе — оценить по этим данным наш будущий выигрыш, то ответ 3.48 принято называть математическим ожиданием случайной величины, которое в общем случае определяется как
Рекомендуем скачать другие рефераты по теме: инвестиции реферат, форма реферата, конспект урока по русскому языку.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата