Разработка ресурсосберегающих технологий и режимов на городском электрическом транспорте
Категория реферата: Рефераты по транспорту
Теги реферата: налоги в россии, реферат биография
Добавил(а) на сайт: Минаев.
Предыдущая страница реферата | 20 21 22 23 24 25 26 27 28 29 30 | Следующая страница реферата
Озонное старение - старение полимерных материалов и изделий под воздействием озона, одно из разновидностей химического старения.
Биологическое старение-старение полимерных материалов и изделий под действием живых организмов и продуктов их жизнедеятельности. Наибольшее влияние на процессы старения оказывают микроорганизмы - микрогрибы и бактерии.
Биоповреждения и старение полимеров - взаимосвязанные процессы. Не только биоповреждения ускоряют процессы старения, но и по мере старения у полимеров снижается стойкость к воздействию биофакторов.
Старение при механических воздействиях - это старение полимерных материалов и изделий, вызываемое действием статических и динамических нагрузок.
К значительному разрушению резин вследствие старения приводят многократные деформации (утомление), когда развиваются не окислительные, а инициированные термические процессы.
Абляционное старение - разрушение полимерного материала, сопровождающееся уносом его массы при воздействии горячего газового потока, жидкости или твердых частиц.
Защита от старения.
К методам защиты полимеров от старения относят: введение наполнителей
(наполнение); введение пластификаторов (пластификация); введение пигментов
и красителей; введение стабилизаторов (светостабилизаторов, антиоксидантов, антиозонантов, противоутомителей, антирадов и применение защитных пленок и
пропиток; прочие методы (применение специальных конструкций изделий, изменение режимов эксплуатации и т.д.).
Пластификация оказывает положительное воздействие на механические повреждения. Пластификаторы увеличивают взаимоподвижность и эластичность полимерных цепочек, тормозят процессы воздействия внешней среды.
Пигменты и красители - составная часть полимерных материалов, активно участвующая в химических процессах предупреждения старения. Например, поглощая активную часть спектра, они способствуют снижению светочувствительности резин, поливинлхлоридных композиций и ряда других материалов.
Применение защитных пленок и пропиток - широко распространенный метод
защиты полимерных материалов и изделий из них при эксплуатации и хранении.
Пленки и пропитки создают дополнительное поверхностное экранирование
материалов от воздействия света или доступа кислорода воздуха, в результате
чего замедляются окислительные процессы.
Биоповреждения.
Под биоповреждением понимают повреждение объектов, вызываемое живыми организмами или биофалторами (биоагентами).
До последнего времени этой проблеме уделялось недостаточно внимания.
Однако всевозрастающий материальный ущерб от деятельности различных видов
живых организмов заставил расширить масштабы научно-теоретических
исследований и прикладных работ по изысканию эффективных средств и методов
защиты от биоповреждений различных промышленных материалов, технических
изделий, строительных сооружений, конструкций и других объектов народного
хозяйства.
Живые организмы разрушают материалы и изделия, ухудшают их технологические характеристики и свойства, затрудняют работу.
Решение проблемы защиты от биоповреждений позволяет повысить ресурсы эксплуатируемой техники и сооружений, сэкономить сырьевые материалы и более рационально их использовать.
Биоагенты - деструкторы материалов.
К биоагентам относятся бактерии, актиномицеты, грибы, а также насекомые, грызуны и др.
Известно несколько групп бактерий, являющихся причиной биоповреждений многих материалов: сульфатредуцирующие, сероокисляющие, аммонифицирующие, нитрофицирующие и др.
Грибы - обширное сообщество растительных организмов, составляющих более 100 тыс. видов. Среди грибов, вызывающих биоповреждения различных материалов, изделий и сооружений, описано около трехсот видов.
Насекомые - разрушители древесины. Известно большое разнообразие видов насекомых, способных разрушать древесину. Некоторые из них (короеды, златки, усачи, сверлила-рогохвосты) поселяются преимущественно на свежезаготовленной неокоренной древесине, другие (точильщики, домовые усачи, древогрызы, ложнокороеды, слоники-трухляки, термиты, морские древоточцы) способны поражать заготовленную древесину без коры или готовые деревянные конструкции.
Биостойкость материалов.
Биостойкость лакокрасочных материалов, пластмасс, резины, текстильных изделий, древесины, бумаги и нефтепродуктов имеет свои особенности.
Грибостойкость лакокрасочных материалов зависит от многих факторов: химического состава рецептур, наличия внешних загрязнений в процессе их приготовления, качества упаковки окрашенных изделий, климатических условий, наличия контакта с деталями, пораженными микроорганизмами, степени старения покрытия, состава окружающей среды.
В одном и том же классе лакокрасочных материалов, содержащих
различные отвердители, обнаруживается разница в грибоустойчивости покрытий.
Например, более устойчивы покрытия на основе эпоксидных смол с
эпокситиоколуретаном, полиэтиленполиамином, гексаметилендиамином и
полиамидом в качестве отвердителя; менее грибоустойчивы - эпоксидные с
отвердителями полиизоцианатами.
Помимо химического состава, большое значение имеют и физические свойства пленки, такие, как твердость, гигроскопичность. Так, масляные краски и краски, приготовленные на основе фенольных смол, особенно быстро впитывают влагу и поэтому плесневеют.
Контакт пластмасс с микроорганизмами, особенно с плесенью, приводит через некоторое время к появлению на них неисчезаемых пятен, к потере прозрачности и ухудшению физико-механических свойств, электрических и оптических характеристик.
Резины подобно пластмассам представляют собой смеси различных компонентов на основе высокомолекулярных соединений. Многокомпонентность резин, достигающая иногда 15...20 ингредиентов, предопределяет ее недостаточную устойчивость к воздействию микроорганизмов. В результате такого воздействия резинотехнические изделия (РТИ) растрескиваются, понижают электросопротивление, теряют герметизирующую способность. При этом снижаются оптические и противокоррозионные свойства контактирующих с резиной материалов и, наконец, ухудшается внешний вид изделий из-за появления слизистых цветных (черных, красных, белых) пятен.
На поверхности материалов совместно с грибами можно обнаружить и другие группы микроорганизмов: бактерии (кокки, неспороносные бактерии, бациллы), дрожжи, актиномицеты.
По самой своей природе большинство текстильных изделий являются питательной средой для разных видов микроорганизмов, поэтому без специальных мер защиты они даже в сравнительно хороших условиях эксплуатации на открытом воздухе (при транспортировке или хранении на складе) быстро подвергаются плесневению и другим видам микробиологических повреждений. По силе разрушительного воздействия на текстиль первое место занимают плесневые грибы, затем бактерии и актиномицеты.
Наиболее уязвима к действию микроорганизмов, особенно грибов, древесина. Известно более 100 видов грибов-разрушителей древесины, которых классифицируют по следующим группам: плесневые, деревоокрашивающие, дереворазрушающие (домовые, почвенные, атмосферные, аэроводные).
Книги, документация, упаковочная бумага и т. п. могут быстро
приходить в негодность при воздействии микроорганизмов и особенно грибов.
Бумага грибами заражается во время транспортирования, хранения, переработки
в помещениях. Споры грибов переносятся воздушными течениями, поступают с
другими материалами, заносятся людьми. Прорастая, споры грибов разрушают
волокна бумаги, вызывают появление пятен.
Низкая стойкость нефтепродуктов (топлив, смазочных масел, пластичных смазок) обусловлена их углеводородным составом. Активному развитию микрофлоры (бактерий и микроскопических грибов) в нефтепродуктах способствует даже незначительное наличие воды, а также различных примесей и загрязнений, содержащих азот, серу или фосфор, которые наряду с углеводородами микроорганизмы используют в качестве питательной среды.
Особенно нестойки к микроорганизмам дизельные топлива. В топливе, не содержащем воды, микроорганизмы не развиваются, но могут оставаться жизнеспособными в течение продолжительного времени.
Воздействию микроорганизмов подвержены как смазочные, так и консервационные масла.
Микроорганизмы изменяют многие свойства масел, увеличивают их вязкость, плотность, кислотное число, температуру вспышки, коэффициент рефракции, содержание водорастворимых кислот, число омыления и йодное число, тангенс угла диэлектрических потерь, а также понижают температуру застывания и стабильность против окисления,
Микробное поражение масел чаще наблюдается, когда масла не подвергают воздействию высоких рабочих температур и не фильтруют.
Защита от микроорганизмов.
Защита от микробиологических повреждений имеет ряд специфических особенностей.
Для биоагентов (живых организмов) характерна динамическая способность реагировать на окружающую среду. В результате непрерывной эволюции, измеряемой непродолжительными периодами времени, изменяется видовой состав микроорганизмов, а следовательно, и характер воздействия их на материал.
К мероприятиям относят проветривание, осушение воздуха окружающей среды, поддержание чистоты а помещениях, гидрофобизирование поверхностей, применение биоцидных препаратов (дезинфицирующих растворов ингибиторов- фунгицидов и пр.), катодную защиту и др.
Большинство из этих мероприятий, наряду с обеспечением защиты от коррозии металлов, предохраняют от микробиологических повреждений полимерные и другие неметаллические материалы.
Самый доступный профилактический способ защиты изделий в помещениях — проветривание.
Гидрофобизирование - это заполнение пор защитных покрытий специальными составами, обладающими водоотталкивающими свойствами.
Гидрофобизирование эффективно как для металлических (хромовых и др.), так и неметаллических неорганических (фосфатных, оксидных и др.) покрытий.
Для изделий из меди и медных сплавов сочетание предварительной обработки поверхностей в патинирующих растворах с последующей пропиткой гидрофобизирующими составами обеспечивает защитную способность покрытий в течение многих лет.
Дезинфицирующие составы рекомендуется применять с учетом их бактерицидного и коррозионного действия.
Угнетающее воздействие катодной поляризации на микроорганизмы
используют как активное средство защиты подземных и подводных сооружений.
Катодная поляризация осуществляется от внешнего источника тока.
Другой метод катодной защиты основан на создании за счет источника тока ЭДС между защищаемой конструкцией и анодом. Катодная поляризация защищаемого объекта обеспечивает эффективную защиту от почвенной коррозии, одной из причин которой является деятельность микроорганизмов, и в частности сульфатвосстанавливающих бактерий.
Усилить устойчивость лакокрасочных покрытий к микробиологическим повреждениям можно различными способами: улучшением физико-механических свойств, введением в состав покрытия компонентов, стойких к воздействию микроорганизмов, или специальных биоцидов, а также систематической очисткой покрытий от микробиологических обрастаний специальными составами.
Рекомендуем скачать другие рефераты по теме: реферат на тему вода, шпоры на экзамен, век реферат.
Предыдущая страница реферата | 20 21 22 23 24 25 26 27 28 29 30 | Следующая страница реферата