Движение в центрально-симметричном поле
Категория реферата: Рефераты по физике
Теги реферата: шпаргалки по физике, ответственность реферат
Добавил(а) на сайт: Зенона.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
[pic].
Пусть теперь [pic]. Тогда [pic] и [pic] комплексны:
[pic].
Повторяя предыдущие рассуждения, снова придем к равенству (2,6), которое при подстановке значений [pic] и [pic] дает
[pic].
(2,8)
При [pic] это выражение не стремится ни к какому определенному пределу. Так что прямой переход к пределу [pic] невозможен. С учетом (2,8) общий вид вещественного решения может быть написан следующим образом:
[pic]. (2,9)
Эта функция обладает нулями, число которых неограниченно растет с уменьшением [pic]. Поскольку, с одной стороны, выражение (2,9) справедливо для волновой функции ( при достаточно малых [pic]) при любом конечном значении энергии [pic] частицы, а, с другой стороны, волновая функция нормального состояния совсем не должна иметь нулей, то мы можем заключить, что «нормальное состояние2 частицы в рассматриваемом поле соответствует энергии [pic]. Но во всяком состоянии дискретного спектра частица находится в основном в области пространства, в которой [pic]. Поэтому при [pic] частица находится в бесконечно малой области вокруг начала координат, т.е. происходит «падение» частицы в центр.
«Критическое» поле [pic] , при котором становится возможным падение частицы в центр, соответствует значению [pic]. Наименьшее значение коэффициента при [pic] получается при [pic], т.е.
[pic].
(2,10)
Из формулы (2,8) ( для [pic] ) видно, что допускаемое решение
уравнения Шредингера ( вблизи точки, где [pic] ) расходится при [pic] не
быстрее чем [pic]. Если поле обращается при [pic] в бесконечность медленнее
чем [pic], то в уравнении Шредингера в области вблизи начала координат
можно вовсе пренебречь [pic] по сравнению с остальными членами, и мы
получим те же решения, что и для свободного движения, т.е. [pic] . Наконец, если поле обращается в бесконечность быстрее чем [pic] ( как [pic] с [pic]
), то волновая функция вблизи начала координат пропорциональна [pic]. Во
всех этих случаях произведение [pic] обращается при [pic] в нуль.
Далее, исследуем свойства решений уравнения Шредингера в поле, спадающем на больших расстояниях по закону [pic] при произвольном его виде
на малых расстояниях. Предположим сначала, что [pic]. Легко видеть, что в
этом случае может существовать лишь конечное число отрицательных уровней
энергии[1]. Действительно, при энергии [pic] уравнение Шредингера на
больших расстояниях имеет вид (2,1) с общим решением (2,4). Но функция
(2,4)не имеет ( при [pic] ) нулей; поэтому все нули искомой радиальной
волновой функции лежат на конечных расстояниях от начала координат и их
число, во всяком случае, конечно. Другими словами, порядковый номер уровня
[pic], замыкающего дискретный спектр, конечен.
Если же [pic], то дискретный спектр содержит бесконечное число
отрицательных уровней энергии. Действительно, волновая функция состояния
[pic] имеет на больших расстояниях вид (2,9) с бесконечным числом нулей, так что ее порядковый номер во всяком случае бесконечен.
Наконец, пусть поле [pic] во всем пространстве. Тогда при [pic] происходит падение частицы. Если же [pic], то отрицательные уровни энергии отсутствуют вовсе. Действительно, волновая функция состояния [pic] будет во всем пространстве вида (2,7); она не имеет вовсе нулей на конечных расстояниях, т.е. соответствует наиболее низкому (при данном [pic] ) уровню энергии.
3. Движение в кулоновом поле ( сферические координаты ).
Очень важным случаем движения в центрально-симметричном поле является движение в кулоновом поле
[pic]
( [pic] - положительная постоянная ). Мы будем рассматривать сначала кулоново притяжение, соответственно чему будем писать [pic]. Из общих соображений заранее очевидно, что спектр отрицательных собственных значений энергии будет дискретным ( с бесконечным числом уровней ), а спектр положительных энергий – непрерывным.
Уравнение (1,8) для радиальных функций имеет вид
[pic] (3,1)
Если речь идет об относительном движении двух притягивающихся частиц, то под [pic] надо подразумевать их приведенную массу.
В вычислениях, связанных с кулоновским полем, удобно пользоваться вместо обычных особыми единицами для измерения всех величин, которые мы будем называть кулоновскими единицами. Именно, в качестве единиц измерения массы, длины и времени выберем соответственно
[pic] [pic]
[pic]
Рекомендуем скачать другие рефераты по теме: реферат мировой, куплю диплом.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата