Формирование инвестиционного портфеля
Категория реферата: Рефераты по информатике, программированию
Теги реферата: bestreferat ru, реферат катастрофы
Добавил(а) на сайт: Альбертина.
Предыдущая страница реферата | 13 14 15 16 17 18 19 20 21 22 23 | Следующая страница реферата
(4.1.3) |
Разложив вектор R по указанному базису, и подставив это разложение в (4.1.3), получим следующие выражения для коэффициентов разложения (4.1.2):
(4.1.4) |
Здесь - коэффициенты разложения вектора R по базису. Условием нарушения оптимальности решения является факт обращения в ноль одного из неотрицательных коэффициентов (4.1.4). Отсюда следует, что интервал, на котором исходное решение является оптимальным, является отрезком следующего вида:
(4.1.5) |
где
(4.1.6) |
а
(4.1.7) |
Из выражений (4.1.4) вытекает также тот факт, что на интервалах (4.1.5) вектор-функция x*(m ) представляет собой отрезок прямой в пространстве En , и является линейной. Стало быть, значения целевой функции на интервале представляют собой параболу.
4.3 Применение метода субоптимизации на многообразиях к решению параметрической задачи квадратичного программирования.
Непосредственно из вышеизложенного следует алгоритм решения задачи квадратичного программирования с параметром в правых частях ограничений:
1. В начальной точке интервала допустимых значений параметра строится решение задачи квадратичного программирования с помощью метода субоптимизации, описанного выше.
2. С помощью формул (4.1.6-4.1.7) определяется интервал на котором полученное решение остается оптимальным.
3. В правой точке полученного интервала строится решение задачи квадратичного программирования методом субоптимизации на многообразиях. Поскольку в этой точке существуют два оптимальных базиса, с целью предотвращения зацикливания в качестве начального базиса для решения задачи предлагается использовать предыдущий оптимальный базис (если решение потеряло оптимальность) или предыдущий оптимальный базис с исключенными векторами, чьи базисные переменные обратились в ноль.
5.Экономическая часть
Рассмотрим применение описанной теории к задаче определения оптимального портфеля ценных бумаг. Сформулируем задачу:
Имеется n видов ценных бумаг, имеющих доходности выражающиеся случайными величинами , распределенными по нормальному закону с параметрами . Помимо этого, имеется один вид ценных бумаг, дающий гарантированную доходность . Некий финансист ищет такой способ вложения единицы капитала в эти ценные бумаги, который обеспечил бы максимальный уровень дохода с заданной вероятностью a .
Покажем, что указанную задачу можно свести к задаче математического программирования:
Предположим, что вектор задает вложения финансиста в ценные бумаги соответствующего типа, а величина вложения в ценные бумаги с гарантированной доходностью. Тогда доход финансиста представляет собой случайную величину:
Очевидно, что характеристики этой случайной величины зависят от решения финансиста, и что эта величина распределена по нормальному закону:
Рекомендуем скачать другие рефераты по теме: реферат предприятие, реферат по русскому.
Предыдущая страница реферата | 13 14 15 16 17 18 19 20 21 22 23 | Следующая страница реферата