Алгебра матриц
Категория реферата: Рефераты по математике
Теги реферата: мировая война реферат, сообщения в одноклассниках
Добавил(а) на сайт: Zaporozhec.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Таким образом, коммутативный (переместительный) закон умножения матриц, вообще говоря, не выполняется, т.е. В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е такого же порядка, т.е.
3. , .
Для этих матриц произведение как АВ ,так и ВА не существует.
,
Получим , ВА – не существует.
Свойства умножения матриц.
Пусть А,В,С – матрицы соответствующих размеров (т.е. произведения матриц определены), l - действительное число. Тогда на основании определений операций и свойств действительных чисел имеют место следующие свойства:
(АВ)С = А(ВС) – ассоциативность.
(А+В)С = АС+ВС – дистрибутивность.
А(В+С) = АВ+АС – дистрибутивность.
l(АВ) = (lА)В = А(lВ).
ЕА = АЕ = А, для квадратных матриц единичная матрица Е играет роль единицы.
Приведем пример доказательства лишь одного свойства. Докажем, например, свойство 3.
Пусть для А=(аij), B=(bij), C=(cij) произведения матриц определены. Найдем элемент i-ой строки и j-го столбца матрицы А(В+С). Это будет число
аi1(b1j+c1j)+ аi2(b2j+c2j)+…+аin(bnj+cnj) =
(аi1b1j+ai2b2j+…+ainbnj)+ (аi1c1j+ai2c2j+…+aincnj).
Первая сумма в правой части равенства равна элементу из i-ой строки и j-го столбца матрицы АВ, а вторая сумма равна элементу из i-ой строки и j-го столбца матрицы АС. Рассуждение верно при любых i и j, то свойство 3 доказано.
Упражнение 1. Проверьте свойство ассоциативности 1 для матриц:
, , .
Упражнение 2. Проверьте свойство дистрибутивности 2 для матриц:
, , .
Упражнение 3. Найти матрицу А3, если .
Вырожденные и невырожденные матрицы
Определение. Матрица называется вырожденной, если ее определитель равен нулю, и невырожденной, если определитель матрицы отличен от нуля.
Пример. , = 16-15 = 1 0; А – невырожденная матрица.
Рекомендуем скачать другие рефераты по теме: сочинение базаров, как оформить реферат.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата