
Алгебраическое и графическое решение уравнений, содержащих модули
Категория реферата: Рефераты по математике
Теги реферата: оформление доклада титульный лист, налогообложение реферат как правильно реферат
Добавил(а) на сайт: Малеев.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Графическое решение
Преобразуем уравнение: : 1 + |x| = 0.5
|x| =0.5-1
|x|=-0.5
Графиком
функции являются лучи - биссектрисы 1-го и 2-го
координатных углов. Графиком функции
является прямая, параллельная оси OX и
проходящая через точку -0,5 на оси OY.
Рис. 11
Графики не пересекаются, значит уравнение не имеет решений (см. рис. 11).
Ответ: нет решений.
Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.
Решение:
Аналитическое решение
1-й способ
Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.
Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.
Поскольку
в левой части - модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е. Таким образом, область допустимых
значений
модуля
Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:
(1)
и (2)
Решим каждую систему:
(1)
входит в промежуток
и является корнем уравнения.
(2)
x = -3 не входит в промежуток
и не является корнем уравнения.
Ответ:
2-й способ
Установим, при каких значениях x модуль в левой части уравнения обращается в нуль:
Рекомендуем скачать другие рефераты по теме: изложение русский язык 6 класс, личные сообщения.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата