Аркфункции
Категория реферата: Рефераты по математике
Теги реферата: реферат будущее, диплом формирование
Добавил(а) на сайт: Полотенцев.
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата
Формулы сложения дают выражения для суммы или разности двух (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.
Сказанное пояснено ниже на числовых примерах.
Примеры.
Пример №1. Преобразовать в арксинус сумму
Решение: эта сумма является суммой двух дуг α и β, где
;
В данном случае (т.к. , а следовательно, ), а также , поэтому .
Вычислив синус дуги γ, получим:
Т.к. сумма γ заключена на сегменте [-π/2; π/2], то
Пример №2. Представить дугу γ, рассмотренную в предыдущем примере, в виде арктангенса. Имеем:
Откуда
Пример №3. Представить посредством арктангенса сумму
Решение: в данном случае (в отличие от предыдущего) дуга γ оканчивается во второй четверти, т.к. , а . Вычисляем
В рассматриваемом примере , так как дуги γ и заключены в различных интервалах,
, а
В данном случае
Пример №4. Представить дугу γ, рассмотренную в предыдущем примере, в виде арккосинуса.
Решение: имеем
Обе дуги γ и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:
Рекомендуем скачать другие рефераты по теме: диплом рф, реферат на тему жизнь.
Предыдущая страница реферата | 9 10 11 12 13 14 15 16 17 18 19 | Следующая страница реферата