
Автоколебания системы с одной степенью свободы
Категория реферата: Рефераты по математике
Теги реферата: растения реферат, решебник 6 класс
Добавил(а) на сайт: Vitvinskij.
Предыдущая страница реферата | 1 2 3 4

Или преобразовав их, получим следующее:

Полагая Р = R sin j ; Q = R cos j . Далее найдем для амплитуды R и фазы j для того исходного периодического решения, в близости к которому устанавливается рассматриваемое периодическое решение , соотношения связывающие их :

Первая формула дает "резонансную поверхность" для амплитуды. Вторая - для фазы. По (38) условия устойчивости имеют вид b < 0, D > 0. Считаем b и D через формулы (35-37).


Т.е. решение является устойчивым, если удовлетворяется условие (**). В заключение выпишем формулы для вычисления aо, соответствующего ширине захватывания для рассматриваемого случая.
1)
a0 - является общим корнем уравнений

2)
Сама ширина D w , отсчитанная от одной границы захватывания до другой выражается следующим образом: D w = aо w 2о (MS - c r). Можно дать простые формулы для вычисления ширины захватывания в следующих случаях:
а) l 2о << 1; D w = w о Ро/Vоg.
б) для очень сильных сигналов ( Vоg - амплитуда сеточного напряжения при отсутствии внешней силы).
Скачали данный реферат: Эмиль, Кондратьев, Воеводин, Шмелев, Образцов, Пахомий.
Последние просмотренные рефераты на тему: диплом государственного образца, диплом разработка, бумага реферат, сочинение 5 класс.
Предыдущая страница реферата | 1 2 3 4