Дифференцированные уравнения
Категория реферата: Рефераты по математике
Теги реферата: читать рассказы, новшество
Добавил(а) на сайт: Лосевский.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Запишем исходное уравнение в операторной форме, используя подстановку p=[pic] .Получим: y(t)=kg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа: y(t)=Y(s) g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s)
W(s)=k (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1. Тогда h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции: w(t)=[pic]=k((t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики: k=2 h(t)=2(1(t) w(t)=2(((t)
Переходная функция представляет собой ступенчатую функцию с шагом k=2, а функция веса - импульсную функцию, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j(:
W(s)=k
W(j()=k (7)
W(j()=U(()+jV(()
U(()=k
V(()=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(()=(W(j()(
A(()=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
((()=argW(j()
((()=0 (9)
Для построения логарифмических частотных характеристик вычислим
L(()=20lg A(()
L(()=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения. k=2
Рекомендуем скачать другие рефераты по теме: подготовка реферата, 6 класс контрольные работы.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата