Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Категория реферата: Рефераты по математике
Теги реферата: конспект, методы изложения
Добавил(а) на сайт: Глебов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений
[pic] (24) также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить An и Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)
[pic] (25)
Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке [pic], разлагается в ряд Фурье
[pic] (26) где
[pic] (27)
Если функции ((x) и ((x) удовлетворяют условиям разложения в ряд
Фурье, то
[pic] (28)
[pic] (29)
Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить
[pic] (30) чем полностью определяется функция (24), дающая решение исследуемой задачи.
Итак, мы доказали, что ряд (24), где коэффициенты An и Bn определены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (1) и удовлетворяет граничным и начальным условиям (9) и (10).
Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция [pic] должна быть дважды дифференцируемой, а [pic] - один раз дифференцируемой.
Глава 2. УРАВНЕНИЯ ПАРАБОЛИЧЕСКОГО ТИПА
§2.1. Задачи, приводящие к уравнениям гиперболического типа.
1. Уравнение распространения тепла в стержне.
Рассмотрим однородный стержень длины [pic]. Будем предполагать, что боковая поверхность стержня теплонепроницаема и что во всех точках поперечного сечения стержня температура одинакова. Изучим процесс распространения тепла в стержне.
Расположим ось Ох так, что один конец стержня будет совпадать с точкой х = 0, а другой – с точкой х = [pic].
Рис. 2.1.
Пусть u (x, t) – температура в сечении стержня с абсциссой х в момент t. Опытным путем установлено, что скорость распространения тепла, т. е. количество тепла, протекающего через сечение с абсциссой х за единицу времени, определяется формулой
[pic] (1) где S – площадь сечения рассматриваемого стержня, k – коэффициент теплопроводности.
Рассмотрим элемент стержня, заключенный между сечениями с абсциссами х1 и х2 (х2 – х1 = [pic]х). Количество тепла, прошедшего через сечение с абсциссой х1 за время [pic]t, будет равно
[pic] (2) то же самое с абсциссой х2:
[pic] (3)
Приток [pic]Q1 - [pic]Q2 в элемент стержня за время [pic]t будет
равняться:
[pic] (4)
Этот приток тепла за время [pic]t затратился на повышение температуры
элемента стержня на величину [pic]u:
Рекомендуем скачать другие рефераты по теме: реферат легкая атлетика, франция реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата