Как писать математические тексты
Категория реферата: Рефераты по математике
Теги реферата: шпаргалки по математике, шпаргалки на экзамен
Добавил(а) на сайт: Fiveja.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Местоимение «я» и, особенно, его неизменное повторение, порой производит отталкивающий эффект, как высокомерие или проповеднический тон; по этой причине я стараюсь избегать его, где только возможно. В коротких заметках, в личных замечаниях, или в очерках вроде этого оно на своем месте.
13. Правильно используйте слова . Единицы информации, в порядке убывания, таковы: тема, глава, абзац, фраза, слово. Раздел о местоимениях был посвящен словам, хотя, в несколько более строгом смысле, он содержал рекомендации о стратегии стиля. Мой следующий совет, как он звучит в заголовке, не следует понимать прямолинейно; само собой разумеется, что слова надо использовать правильно. Но вот что я хочу подчеркнуть: следует тщательно обдумывать и точно дозировать слова, взывающие к здравому смыслу и интуиции, с одной стороны, и специальные математические слова (технические термины), — с другой. Это может глубоко влиять на математический смысл.
Общее правило: корректно пользуйтесь терминами логики и математики. Я не призываю к педантизму и не предлагаю размножать технические термины для понятий, на волосок отличающихся друг от друга. Наоборот, я имею в виду мастерство настолько тонкое, чтобы оно не бросалось в глаза.
Вот пример: «Доказать, что какое-то (any) комплексное число является произведением некоторого неотрицательного числа и числа с модулем 1». У меня были студенты, которые доказывали это так: «–4i — комплексное число; оно является произведением неотрицательного числа 4 и числа –i, имеющего модуль 1; это и требовалось доказать». Дело в том, что в разговорном английском языке слово «any» — двусмысленное; в зависимости от контекста оно может отвечать либо квантору существования либо квантору общности. Вывод: никогда не используйте слово «any» в математических сочинениях. Заменяйте его на «every» или на «each» или переделывайте фразу.
Вот один способ переделать фразу предыдущего абзаца, данную в качестве примера: условиться, что все «отдельные переменные» пробегают множество комплексных чисел, а потом написать нечто вроде такого выражения:
"z $p $u [(p = |p|) Ù (|u| = 1) Ù (z = pu)].
Я настоятельно советую не делать этого. Символика формальной логики необходима в обсуждении логики и математики, однако в качестве средства сообщения идей от одного смертного к другому она превращается в громоздкий шифр. Автор должен сначала перекодировать свою мысль (я отрицаю, что кто бы то ни было мыслит в терминах $, ", Ù и т.п.), а затем читатель вынужден расшифровать написанное автором; оба шага приводят к растрате времени и затрудняют понимание. Символическая запись, все равно, в стиле современного логика или классического эпсилониста, — это текст, который могут писать машины, и едва ли кто-нибудь, кроме машин, может этот текст читать.
О слове «any» достаточно. А вот — другие нарушители, которые, правда, обвиняются в меньших преступлениях: «где», «эквивалентно», «если... то... если... то». «Где» — обычно знак того, что автор нехотя подумал о том, о чем должен был подумать заранее. «Если n достаточно велико, то |аn|<e, где e — любое наперед заданное положительное число»; болезнь и лечение от нее ясны. Слово «эквивалентный» для теорем — логическая бессмыслица. (Под теоремой я подразумеваю математическую истину, нечто доказанное. Осмысленное утверждение может быть неверным, но теорема быть неверной не может: «неверная теорема» — внутренне противоречивый термин.) Какой смысл говорить, что полнота пространства L² эквивалентна теореме о представлении линейных функционалов на L²? Имеется в виду, что доказательства обеих теорем — средние по трудности, и если одна из них (любая) уже доказана, то другую можно доказать с относительно меньшими усилиями. Логически точное слово «эквивалентный» здесь не годится. Оборот «если... то... если... то» представляет собой стилистический прием, часто употребляемый скорыми авторами и огорчающий медлительных читателей. «Если справедливо р, то если имеет место q, то выполняется r». Логически тут все в порядке (р Þ (q Þ r)), но психологически на этом месте непременно споткнешься. Обычно нужно только переделать фразу; однако, универсального способа переделать ее нет. Все зависит от того, что важнее в данном конкретном случае. Можно так: «если p и q, то r»; или «при условии p из предположения q следует вывод r»; есть и многие другие варианты.
14. Правильно пользуйтесь техническими терминами . До сих пор речь шла, по существу, о логических аспектах стиля в математике. Теперь я хочу показать, что такое ненавязчивая точность языка в повседневной работе математика на трех примерах: функции, последовательности и включения.
Я принадлежу к школе, для которой функции и их значения — настолько разные вещи, что это различие должно соблюдаться. Не надо суетиться, по крайней мере на людях; просто старайтесь не произносить слова типа «функция z² + 1 — четная». Формулировка «функция f, определенная равенством f(z) = z² + 1 — четная», или, что предпочтительнее с многих точек зрения, «функция z ® z² + 1 — четная» немногим длиннее, но хорошая привычка к ней порой спасает читателя и автора от грубых заблуждений и всегда делает изложение более гладким.
«Последовательность» — это функция, область определения которой является множеством натуральных чисел. Когда какой-нибудь автор пишет «объединение последовательности измеримых множеств измеримо», он отвлекает внимание читателя на ложный путь. В этой теореме совершенно неважно, что первое множество является первым, второе — вторым и т.д.; слово последовательность не относится к делу. Правильная формулировка такова: «объединение счетного множества измеримых множеств измеримо» (или, если нужно иначе поставить акцент, — «объединение счетного бесконечного множества измеримых множеств измеримо»). Теорема о том, что «предел последовательности измеримых функций измерим» — совсем другое дело; здесь слово «последовательность» на месте. Если читатель знает, что такое последовательность, если у него это понятие в крови, то неправильное употребление этого слова будет его отвлекать и замедлять чтение, пусть совсем не намного. Если же читатель на самом деле не знает этого понятия, то неправильное его употребление серьезно отсрочит окончательное понимание.
Слова «содержать» и «включать» — почти всегда употребляются как синонимы, и часто теми же самыми людьми, которые старательно учат своих студентов, что символы Î и Ì — это вовсе не одно и то же. Совершенно не правдоподобно, что использование этих слов вперемешку приведет к недоразумению. Тем не менее, несколько лет назад я начал эксперимент, который продолжаю и теперь: я систематически устно и письменно использовал глагол «содержать» для Î и «включать» — для Ì. Едва ли я что-нибудь доказал этим, но могу сообщить, что (а) это очень легко; (б) вреда от этого — никакого; (в) думаю, что никто ни разу этого не заметил. Полагаю, хотя, по-видимому, это и недоказуемо, что такого сорта терминологическое постоянство (без суетливости) могло бы тем не менее сделать жизнь читателя (и слушателя) удобнее.
Постоянство, между прочим, — великое достоинство изложения, а непостоянство — смертный грех. Постоянство важно в языке, обозначениях, ссылках, разметке шрифтов — оно важно всюду, а его отсутствие может вызвать все, что угодно, начиная с легкого раздражения и кончая полной дезинформацией.
Мои советы об использовании слов можно резюмировать так. (1) Избегайте технических терминов, где только можно, и особенно старайтесь не сочинять новых. (2) Крепко подумайте над новыми терминами, если уж без них не обойтись. Справьтесь по словарю Роже и выберите их как можно удачнее. (3) Употребляйте старые термины правильно и всегда в одном и том же смысле, но без излишнего педантизма.
15. Воздерживайтесь от обозначений . Все сказанное об употреблении слов с соответствующими изменениями и оговорками применимо к еще более мелкой единице математического сочинения — к математическим символам. Лучшее обозначение — отсутствие обозначений. Где только возможно, избегайте громоздкого алфавитного аппарата. Хорошо готовить письменное математическое сообщение, представляя себе, что оно — устное. Вообразите, будто бы рассказываете все другу на какой-нибудь долгой лесной прогулке и у вас нет бумаги. Прибегайте к обозначениям только тогда, когда это необходимо.
Вот следствие из принципа «чем меньше обозначений, тем лучше их система»: не вводите ненужных букв, точно так же, как ненужных предложений. Пример: «На компактном пространстве всякая вещественнозначная непрерывная функция f ограничена». Зачем здесь f? Разве утверждение от этого становится яснее? Другой пример: «Если 0 £ lim an1/n = r < 1, то lim an = 0». Зачем тут r? Ответ одинаков в обоих случаях (незачем), но причины присутствия лишних букв могут быть различны. В первом случае f может появиться в результате дурной привычки; во втором случае r, возможно, подготавливает доказательство. От дурной привычки можно отвыкнуть. С другим излишеством труднее, потому что здесь автор должен поработать. Без r в формулировке доказательство станет на полстрочки длиннее; его нужно будет начать как-нибудь так: «Положим r = lim an1/n». Повторение (символа lim an1/n) в этом случае целесообразно: и формулировка и доказательство читаются так легче и становятся естественнее.
Эффективная формулировка принципа «не используйте ненужных букв» такова: «Не используйте ни одну букву однократно». Логики сказали бы это так: «Не оставляйте свободных переменных». В приведенном выше примере о непрерывных функциях символ f является свободной переменной. Лучший способ исключить это f — опустить его. Иногда предпочтительнее превратить f из свободной переменной в связанную. Большинство математиков сделало бы это так: «Пусть f — вещественнозначная непрерывная функция на компактном пространстве; тогда f ограничена». Некоторые логики станут, вероятно, настаивать на том, что f — по-прежнему свободная переменная в новой фразе (дважды свободная) и, с технической точки зрения, они будут правы. Чтобы сделать f связанной переменной, необходимо в каком-нибудь грамматически подходящем месте вставить оборот «для всех f», но в математике общепринято молчаливое соглашение, по которому всякой фразе предшествуют все кванторы общности, нужные для обращения всех свободных переменных в связанные.
Правило «никогда не оставлять в предложении свободные переменные», как и многие другие правила, сформулированные мной, иногда лучше нарушать, чем соблюдать. В конце концов, фраза — это условная единица изложения и если вам хочется оставить висеть в ней свободную переменную f, чтобы позднее, скажем, в этом же абзаце, этой f воспользоваться, то не думаю, что вас обязательно нужно гнать из авторского полка. Тем не менее, это — здоровый принцип, он гибок, но бить его вдребезги не следует.
Существуют и другие логические тонкости, способные остановить, или, в лучшем случае, задержать читателя, если с ними небрежно обращаться. Предположим, например, что в каком-то пункте вы написали
|
1 |
|
||||
(*) |
ò |
| f (x)| 2 dx < ¥ Рекомендуем скачать другие рефераты по теме: как лечить шпоры, реферат мыло. Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата Поделитесь этой записью или добавьте в закладкиКатегории: |