Кооперативные игры
Категория реферата: Рефераты по математике
Теги реферата: шпора на пятке лечение, шпаргалки по математике транспорт реферат
Добавил(а) на сайт: Onisim.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Система {N, u}, состоящая из множества игроков, характеристической функции над этим множеством и множеством дележей, удовлетворяющих соотношениям (2) и (3) в условиях характеристической функции, называется классической кооперативной игрой.
Из этих определений непосредственно вытекает следующая
Теорема. Чтобы вектор x = (x1, ..., xn) был дележём в классической кооперативной игре {N, u},
необходимо и достаточно, чтобы
xi = u( i ) + ai, (iÎN)
причём
ai ³ 0 (iÎN)
= u(N) –
В бескоалиционных играх исход формируется в результате действий тех самых игроков, которые в этой ситуации получают свои выигрыши. Исходом в кооперативной игре является делёж, возникающий не как следствие действия игроков, а как результат их соглашений. Поэтому в кооперативных играх сравниваются не ситуации, как это имеет место в бескоалиционных играх, а дележи, и сравнение это носит более сложный характер.
Кооперативные игры считаются существенными, если для любых коалиций K и L выполняется неравенство
u(K) + u(L) < u(KÈL),
т.е. в условии супераддитивности выполняется строгое неравенство. Если же в условии супераддитивности выполняется равенство
u(K) + u(L) = u(KÈL),
т.е. выполняется свойство аддитивности, то такие игры называются несущественными.
Справедливы следующие свойства :
1) для того чтобы характеристическая функция была аддитивной (кооперативная игра – несущественной), необходимо и достаточно выполнение следующего равенства:
= u(N)
2) в несущественной игре имеется только один делёж
{u(1) , u(2) , ... , u(n) };
3) в существенной игре с более чем одним игроком множество дележей бесконечно
( u(1) + a1 , u(2) + a2 , ... , u(n) +an )
где
ai ³ 0 ( i Î N ) , u(N) —> 0
Кооперативная игра с множеством игроков N и характеристической функцией u называется стратегически эквивалентной игрой с тем же множеством игроков и характеристической функцией u1 , если найдутся такие к > 0 и произвольные вещественные Ci ( iÎN ), что для любой коалиции К Ì N имеет место равенство:
u1(K) = k u (K) +
Рекомендуем скачать другие рефераты по теме: конспект урока 10 класс, англия реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата