Локальная и нелокальная задачи для уравнения смешанного типа второго порядка с оператором Геллестедта
Категория реферата: Рефераты по математике
Теги реферата: гражданское право реферат, allbest
Добавил(а) на сайт: Zakrutkin.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Преобразуем двойной интеграл в левой части равенства (27):
. (28)
Учитывая равенство (28) в (27), получаем:
(29)
где
. (30)
Преобразуем двойные интегралы в равенстве (30). В результате получим
,
.
Учитывая J3 и J4 в равенстве (30), окончательно будем иметь:
Откуда заключаем, что . Таким образом, относительно получим интегральное уравнение Фредгольма второго рода:
, (31)
4 Труды молодых ученых № 3, 2007 |
.
Так как , то обращая (31) через резольвенту R(x, t), будем иметь
, (31)
где
Полагая в равенстве (31) х=х0 и х=1, однозначно определим
,
, если выполнены условия
.
После определения функции в области Ω1 приходим к задаче (1), (2) и , которая на основании свойств функции Грина эквивалентно редуцируется к интегральному уравнению Вольтерра второго рода. В области Ω2 решение задачи 2 задается формулой (5).
Рекомендуем скачать другие рефераты по теме: банк курсовых, налоги в россии.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата