Метод Монте-Карло и его применение
Категория реферата: Рефераты по математике
Теги реферата: доклад по английскому, культура шпори
Добавил(а) на сайт: Proskura.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Метод Монте-Карло и его применение
Курсовая работа Зубанова М. А., студента 3 курса очного отделения физико-математического факультета
Арзамасский государственный педагогический институт имени А.П.Гайдара
Кафедра математического анализа
Арзамас-2002 г.
Введение.
Метод Монте-Карло можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений.
Возникновение идеи использования случайных явлений в области приближённых вычислений принято относить к 1878 году, когда появилась работа Холла об определении числа p с помощью случайных бросаний иглы на разграфлённую параллельными линиями бумагу. Существо дела заключается в том, чтобы экспериментально воспроизвести событие, вероятность которого выражается через число p, и приближённо оценить эту вероятность. Отечественные работы по методу Монте-Карло появились в 1955-1956 годах. С того времени накопилась обширная библиография по методу Монте-Карло. Даже беглый просмотр названий работ позволяет сделать вывод о применимости метода Монте-Карло для решения прикладных задач из большого числа областей науки и техники.
Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались мало пригодными. Далее его влияние распространилось на широкий класс задач статистической физики, очень разных по своему содержанию.
Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики (например, развитие методов численного интегрирования) и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их. Его применение оправдано в первую очередь в тех задачах, которые допускают теоретико-вероятностное описание. Это объясняется как естественностью получения ответа с некоторой заданной вероятностью в задачах с вероятностным содержанием, так и существенным упрощением процедуры решения.
Глава 1. Некоторые сведения теории вероятностей
§1. Математическое ожидание, дисперсия.
Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятность.
,
где Х – случайная величина, - значения, вероятности которых соответственно равны .
Математическое ожидание приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.
Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .
Средним квадратичным отклонением случайной величины Х называют квадратный корень из дисперсии: .
§2. Точность оценки, доверительная вероятность. Доверительный интервал.
Точечной называют оценку, которая определяется одним числом.
Интервальной называют оценку, которая определяется двумя числами – концами интервала. Интервальные оценки позволяют установить точность и надёжность оценок.
Пусть, найденная по данным выборки, статистическая характеристика служит оценкой неизвестного параметра . Ясно, что тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если d>0 и , то , чем меньше d, тем оценка точнее. Положительное число d характеризует точность оценки.
Надёжностью (доверительной вероятностью) оценки по называют вероятность g, с которой осуществляется неравенство .
Доверительным называют интервал , который покрывает неизвестный параметр с заданной надёжностью g.
§3. Нормальное распределение.
Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается дифференциальной функцией
.
а - математическое ожидание, s - среднее квадратичное отклонение нормального распределения.
Глава 2. Метод Монте-Карло
§1. Общая схема метода Монте-Карло.
Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину Х, математическое ожидание которой равно а: М(Х)=а.
Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений Х; вычисляют их среднее арифметическое и принимают x в качестве оценки (приближённого значения) a* искомого числа a:
Рекомендуем скачать другие рефераты по теме: реферат инструменты, борьба реферат.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата