Методы решения уравнений, содержащих параметр
Категория реферата: Рефераты по математике
Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
Добавил(а) на сайт: Kiriana.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата
Решением уравнения (неравенства, системы) является какое-то подмножество множества действительных чисел и другие (см. [5]).
Пример. В зависимости от значения параметра найти число корней уравнения
Решение. Наличие сложного корня наводит на мысль выделения квадрата двучлена под внешним корнем.
Итак, мы вплотную подошли к задаче рассмотрения различных случаев параметра .
Если , то уравнение не имеет решения.
Если , то рассмотрим . Если , то . При условии , и очевидно это уравнение имеет только один корень.
Ответ. При – одно решение,
при – решений нет.
Пример. При каких значениях параметра уравнение
имеет единственное решение?
Решение. Уравнение переписываем в равносильную систему
Решением неравенства является объединение промежутков . Уравнение системы имеет один корень когда . , то есть при .
Теперь проверим, принадлежит ли корень нашим интервалам: .Тогда
Ответ. При уравнение имеет единственное решение.
Пример. При каких значениях параметра уравнение
.
имеет единственное решение?
Решение. Запишем равносильное уравнение.
.
Теперь перейдем к следствию . Откуда , . Возникла ситуация, которая дает нам возможность воспользоваться механизмом отсеивания корней.
Область определения исходного уравнения найдем из условий
Рекомендуем скачать другие рефераты по теме: диплом купить, allbest.
Предыдущая страница реферата | 8 9 10 11 12 13 14 15 16 17 18 | Следующая страница реферата