Методы решения уравнений, содержащих параметр
Категория реферата: Рефераты по математике
Теги реферата: заказать дипломную работу, русский язык 7 класс изложение
Добавил(а) на сайт: Kiriana.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата
Пример. При каких значениях наибольшее значение трехчлена меньше 4.
Решение.
Так как графиком трехчлена является парабола, то необходимость наибольшего значения меньшего 4 обязывает параметр .
Наибольшее значение будет в вершине параболы.
. Ограничение тоже обязательно. Решением этого неравенства есть . Учитывая необходимость , то .
так как , то решением будет объединение . Тогда Ответ. .
Корни квадратичной функции. Теорема Виета
Рассмотрим квадратное уравнение . Найдем корни этого уравнения . По теореме Виета выполняется следующая система уравнений , где и . Рассмотрим задачу, решение которой при использовании теоремы Виета намного упрощается.
Пример. При каком значении параметра сумма квадратов корней уравнения принимает наименьшее значение?
Решение. Найдем дискриминант, . Уравнение имеет два корня при любом . Используя теорему Виета, найдем . Таким образом, найдем наименьшее значение функции на множестве . Поскольку при , а при , то наименьшее значение при .
Ответ. .
Аппарат математического анализа касательная к прямой )
Учащиеся, как правило, затрудняются с определением касательной к кривой (типичен ошибочный ответ: «Касательная – это прямая, имеющая с кривой одну общую точку»), не видят связь между касательной к графику и ее производной, не понимают смысла переменных в уравнении касательной, не могут применить соответствующие факты к решению задач, особенно геометрического характера. Пояснить учащимся суть вещей могут помочь, например, следующие задачи (см. [1], [5], [19], [21]).
Пример. При каком значении параметра k касательная к графику функции образует с осью ОХ угол, равный , и отсекает от второй четверти треугольник, площадь которого равна ?
Решение. Пусть – координаты точки касания. Уравнение касательной к графику функции в точке имеет вид
.
По условию имеем , . Тогда . Уравнение касательной становится таким: . Найдем координаты точки пересечения касательной с осями.
При .
При .
Тогда, с учетом второй четверти и :
Ответ.
Пример. Найти все значения параметра , при которых на графике функции существует единственная точка с отрицательной абсциссой, касательная в которой параллельна прямой .
Решение. Ясно, что угловой коэффициент касательной, о которой говорится в условии, равен 2. Тогда, если – абсцисса точки касания, то , то есть .
Рекомендуем скачать другие рефераты по теме: диплом купить, allbest.
Предыдущая страница реферата | 12 13 14 15 16 17 18 19 20 21 22 | Следующая страница реферата