Методы решения уравнений в странах древнего мира
Категория реферата: Рефераты по математике
Теги реферата: конспекты занятий в детском саду, личные сообщения
Добавил(а) на сайт: Melan'ja.
Предыдущая страница реферата | 1 2 3 4 5
3) если Sc > 4aз/27, то корня нет.
Здесь 4а3/27 есть максимум х2 (а — х), достигаемый при х = 2а/3. В конце письма, предпосланного книге «О коноидах и сфероидах» (греки называли сфероидами эллипсоиды вращения, прямоугольными коноидами — параболоиды вращения, а тупоугольными коноидами — полости двуполостных гиперболоидов вращения), Архимед пишет, что с помощью доказанных в книге теорем можно решить ряд задач, как, например: от данного сфероида или коноида отсечь сегмент плоскостью, проведенной параллельно заданной, так, чтобы отсеченный сегмент был равен данному конусу, цилиндру или шару. Перечисленные задачи, так же как и задачи о делении шара, сводятся к кубическим уравнениям, причем в случае тупоугольного коноида уравнение будет иметь вид x2(a + x)=Sc
Из текста Архимеда можно заключить, что он проанализировал и решил это
уравнение. Таким образом, Архимед рассмотрел кубические уравнения вида х3 +
ax + b = 0 при различных значениях a и b и дал метод их решения. Однако
исследование кубических уравнений оставалось для греков трудной задачей, с
которой, в ее общем виде никто, кроме Архимеда, не мог справиться. Решение
отдельных задач, эквивалентных кубическим уравнениям, греческие математики
получали с помощью нового геометрического аппарата конических сечений. Этот
метод впоследствии восприняли математики стран ислама, которые сделали
попытку провести полный анализ всех уравнений третьей степени.
Но еще до этого, и притом греческими математиками, был сделан новый
решительный шаг в развитии алгебры: геометрическая оболочка была сброшена, и началось построение буквенной алгебры на основе арифметики. Это произошло
в первые века нашей эры.
Литература:
«История математики в древности» Э. Кольман.
«Решение уравнений в целых числах» Гельфонд.
«В мире уравнений» В.А.Никифоровский.
«История математики в школе» Г.И.Глейзер.
«Рассказы о старой и новой алгебре» И.Депман.
«Пифагор: рассказы о математике» Чистаков.
«Краткий очерк истории математики» Стройк Д.Я.
«Очерки по истории математики» Болгарский Б.В.
«История математики» (энциклопедия) под редакцией Юшкевича.
«Энциклопедический словарь юного математика» под редакцией Гнеденко.
--------------------
(2)_
(1)
Скачали данный реферат: Gedimin, Кулеш, Smirnitskij, Antipij, Bazanov, Труш.
Последние просмотренные рефераты на тему: налоги в россии, оформление доклада, научный журнал, анализ курсовой работы.
Предыдущая страница реферата | 1 2 3 4 5