Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками
Категория реферата: Рефераты по математике
Теги реферата: бесплатные дипломы, скачать контрольную
Добавил(а) на сайт: Bol'shakov.
1 2 3 4 5 6 | Следующая страница реферата
Нелокальная краевая задача для уравнения смешанного типа третьего порядка с кратными характеристиками
Езаова А.Г.
Кафедра теории функций.
Кабардино-Балкарский государственный университет
В работе рассматривается нелокальная краевая задача для уравнения смешанного типа. Поставленная задача сводится к сингулярному интегральному уравнению, которое методом Карлемана-Векуа редуцируется к интегральному уравнению Фредгольма третьего рода.
Рассмотрим уравнение
(1)
где m – натуральное число в конечной односвязной области , ограниченной отрезками прямых соответственно – и характеристиками:
уравнения (1).
Пусть ;– интервал прямой ;
– аффиксы точек пересечения характеристик уравнения (1) при , выходящих из точки , с характеристиками и соответственно;
(2)
(3)
– операторы дробного интегрирования порядка - при и обобщенные в смысле Лиувилля производные порядка при , причем
где – единичный оператор, а – целая часть .
Под регулярным в области решением уравнения (1) будем понимать функцию , удовлетворяющую уравнению (1) в , и такую, что может обращаться в бесконечность порядка ниже на концах А и В интервала I.
Задача Н. Найти регулярное в области решение уравнения (1), удовлетворяющее краевым условиям:
, (4)
, (5)
где ,
(5`)
. (6)
Пусть существует решение задачи . Тогда, регулярное решение уравнения (1) в гиперболической части , удовлетворяющее данным Коши , дается формулой [1]:
Рекомендуем скачать другие рефераты по теме: политология шпаргалки, реферат металлы.
1 2 3 4 5 6 | Следующая страница реферата