Рациональные уравнения и неравенства
Категория реферата: Рефераты по математике
Теги реферата: реферат по экологии, реферат н
Добавил(а) на сайт: Smirnov.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Каршиев Егор Аликович стр. 1 20.06.98Ё
Содержание
I. Рациональные уравнения.
1) Линейные уравнения.
2) Системы линейных уравнений.
3) Квадратные уравнения и уравнения, сводящиеся к ним.
4) Возвратные уравнения.
5) Формула Виета для многочленов высших степеней.
6) Системы уравнений второй степени.
7) Метод введения новых неизвестных при решении уравнений и систем уравнений.
8) Однородные уравнения.
9) Решение симметрических систем уравнений.
10) Уравнения и системы уравнений с параметрами.
11) Графический метод решения систем нелинейных уравнений.
12) Уравнения, содержащие знак модуля.
13) Основные методы решения рациональных уравнений
II. Рациональные неравенства.
1) Свойства равносильных неравенств.
2) Алгебраические неравенства.
3) Метод интервалов.
4) Дробно-рациональные неравенства.
5) Неравенства, содержащие неизвестное под знаком абсолютной величины.
6) Неравенства с параметрами.
7) Системы рациональных неравенств.
8) Графическое решение неравенств.
III. Проверочный тест.
Рациональные уравнения
Функция вида
P(x) = a0xn + a1xn – 1 + a2xn – 2 + … + an – 1x + an,
где n — натуральное, a0, a1,…, an — некоторые действительные числа, называется целой рациональной функцией.
Уравнение вида P(x) = 0, где P(x) — целая рациональная функция, называется целым рациональным уравнением.
Уравнение вида
P1(x) / Q1(x) + P2(x) / Q2(x) + … + Pm(x) / Qm(x) = 0,
где P1(x), P2(x), … ,Pm(x), Q1(x), Q2(x), …, Qm(x) — целые рациональные функции, называется рациональным уравнением.
Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x)
— многочлены (Q (x) ( 0), сводится к решению уравнения P (x) = 0 и
проверке того, что корни удовлетворяют условию Q (x) ( 0.
Линейные уравнения.
Уравнения вида ax+b=0, где a и b — некоторые постоянные, называется линейным уравнением.
Если a(0, то линейное уравнение имеет единственный корень: x = -b
/a.
Если a=0; b(0, то линейное уравнение решений не имеет.
Если a=0; b=0, то, переписав исходное уравнение в виде ax = -b, легко видеть, что любое x является решением линейного уравнения.
Уравнение прямой имеет вид: y = ax + b.
Если прямая проходит через точку с координатами X0 и Y0, то эти координаты удовлетворяют уравнению прямой, т. е. Y0 = aX0 + b.
Пример 1.1. Решить уравнение
2x – 3 + 4(x – 1) = 5.
Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x – 3 + 4x – 4 = 5, 2x + 4x = 5 + 4 + 3,
6x = 12, x = 2.
Рекомендуем скачать другие рефераты по теме: доклад по обж, курсовые работы.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата