Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
Категория реферата: Рефераты по математике
Теги реферата: онегин сочинение, красная книга доклад
Добавил(а) на сайт: Борисов.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
Курсовая работа
Исполнитель: Бугров С К.
Москва, 2003
Введение
Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.
Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.
В моём реферате рассмотрены часто встречающиеся типы уравнений, неравенств и их систем, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов и при поступлении а ВУЗ.
§ 1. Основные определения
Рассмотрим уравнение
¦(a, b, c, …, k, x)=j(a, b, c, …, k, x), (1)
где a, b, c, …, k, x -переменные величины.
Любая система значений переменных
а = а0, b = b0, c = c0, …, k = k0, x = x0,
при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аÎА, bÎB, …, xÎX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.
Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.
Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.
Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.
Два уравнения, содержащие одни и те же параметры, называются равносильными, если:
а) они имеют смысл при одних и тех же значениях параметров;
б) каждое решение первого уравнения является решением второго и наоборот.
§ 2. Алгоритм решения.
Находим область определения уравнения.
Выражаем a как функцию от х.
В системе координат хОа строим график функции а=¦(х) для тех значений х, которые входят в область определения данного уравнения.
Находим точки пересечения прямой а=с, где сÎ(-¥;+¥) с графиком функции а=¦(х).Если прямая а=с пересекает график а=¦(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=¦(х) относительно х.
Рекомендуем скачать другие рефераты по теме: рефераты бесплатно, реферат услуги.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата