Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
Категория реферата: Рефераты по математике
Теги реферата: онегин сочинение, красная книга доклад
Добавил(а) на сайт: Борисов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
которое удобнее переписать в виде
Теперь решение задачи сводится к рассмотрению дискриминанта D последнего уравнения:
если , т.е. если , то система (3) имеет два решения;
если , то система (3) имеет три решения;
если , то система (3) имеет четыре решения.
Таким образом, одинаковое число решений у систем (1) и (2) – это четыре. И это имеет место, когда .
Ответ:
II. Неравенства с параметрами.
§1. Основные определения
Неравенство
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x), (1)
где a, b, c, …, k – параметры, а x – действительная переменная величина, называется неравенством с одним неизвестным, содержащим параметры.
Любая система значений параметров а = а0, b = b0, c = c0, …, k = k0, при некоторой функции
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
имеют смысл в области действительных чисел, называется системой допустимых значений параметров.
называется допустимым значением х, если
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
принимают действительные значения при любой допустимой системе значений параметров.
Множество всех допустимых значений х называется областью определения неравенства (1).
Действительное число х0 называется частным решением неравенства (1), если неравенство
¦(a, b, c, …, k, x0)>j(a, b, c, …, k, x0)
верно при любой системе допустимых значений параметров.
Рекомендуем скачать другие рефераты по теме: рефераты бесплатно, реферат услуги.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата