Шпаргалка по высшей математике
Категория реферата: Рефераты по математике
Теги реферата: контрольная по русскому языку, реферат образование
Добавил(а) на сайт: Kudrov.
1 2 3 4 5 6 | Следующая страница реферата
1. Определители. Основные определения. Вычисление определителей третьего
порядка.
Определитель- число, характеризующее матрицу. Определителем матрицы 1-го
порядка А=(а11) является единственный элемент этой матрицы. Определителем
2-го порядка называется число, характеризующее матрицу 2-го порядка, которое находится по следующему правилу: из произведений элементов главной
диагонали вычитается произведение элементов второй диагонали матрицы А.
Определителем матрицы 3-го порядка называется число, вычисляемое по правилу
Сарруса. Правило Сарруса: определитель 3-го порядка ((3) равен
алгебраической сумме 6-ти тройных произведений элементов, стоящих в разных
строках и разных столбцах; со знаком «+» берутся произведения, сомножители
которых находятся на главной диагонали и в вершинах треугольников, чьи
основания параллельны главной диагонали, остальные слагаемые берутся со
знаком «-».
2. Свойства определителей.
1) Если к.-л. строка или столбец в матрице состоит из одних нолей, то (
этой матрицы равен 0. 2)При транспонировании матрицы её определитель не
изменяется: (А (=( А’( . 3) Если все элементы к.-л. строки или столбца
матрицы умножить на одно и то же число, то и ( этой матрицы умножится на
это же число. 4) При перестановке местами 2-х строк или столбцов матрицы её
определитель меняет свой знак на противоположный. 5) Если квадратная
матрица содержит 2 одинаковых строки или столбца, то её определитель равен
0. 6)Если 2 строки или 2 столбца матрицы пропорциональны, то её ( равен 0.
7) Сумма произведений элементов к.-л. строки или столбца матрицы и другой
строки или столбца равна 0. 8) Определитель матрицы не изменяется если к
элементам одной строки или столбца прибавить элементы другой строки или
столбца, умноженный на одно и то же число. 9)Если к.-л. столбец или строка
матрицы представляет собой сумму 2-х элементов, то ( этой матрицы может
быть представлен в виде суммы 2-х определителей.
3. Минор.
Минором Мij квадратной матрицы n-го порядка для элемента аij называется определитель (n-1)-ого порядка, полученный с данного вычёркиванием i-ой строки и j-ого столбца.
4. Алгебраическое дополнение.
Алгебраическим дополнением Аij для элемента квадратной матрицы аij называется минор этого элемента, взятый со знаком (-1)i+j .
5. Вычисление определителей любого порядка. Понятие определителя n-ого порядка.
Определителем квадратной матрицы n-ого порядка называется число, равное
алгебраической сумме n членов, каждый из которых является произведением n-
элементов матрицы, взятых по одному из каждой строки или столбца (причём
знак каждого члена определяется как (-1)r(j), где r(j)-число инверсий).
Теорема Лапласа: определитель квадратной матрицы равен сумме произведений
элементов к.-л. строки или столбца на их алгебраические дополнения.
6. Матрицы. Основные определения.
Матрицей размера mxn называется прямоугольная таблица чисел, содержащая m
строк и n столбцов. Вектор-строкой называют матрицу, состоящую из одной
строки. Вектор-столбцом - из одного столбца. Матрица, у которой количество
столбцов равно количеству строк, называется квадратной матрицей n-ого
порядка. Элементы матрицы, у которых номер строки и номер столбца
совпадает, называются диагональными и образуют главную диагональ матрицы.
Если все недиагональные элементы матрицы равны нулю, то матрицу называют
диагональной. Если у диагональной матрицы n-ого порядка на главной
диагонали все элементы равны 1, то матрица называется единичной и
обозначается Е. Матрица любого размера, все элементы которой равны 0, называется нуль-матрицей.
7. Операции над матрицами.
1)Умножение матрицы на число: условий нет, умножить на число можно любую
матрицу. Произведением матрицы А на число ( называется матрица В, равная
(А, каждый элемент которой находится по формуле: bij =( x aij. Для того, чтобы умножить матрицу на число необходимо умножить на это число каждый
элемент матрицы. 2)Сложение 2-х матриц: условие - складывать можно только
матрицы одинакового размера. Суммой 2-х матриц А и В называется матрица
С=А+В, каждый элемент которой находится по формуле Сij=aij+bij. Для того, чтобы сложить 2 матрицы, необходимо складывать между собой элементы, стоящие на одинаковых местах. 3)Вычитание 2-х матриц: операция аналогична
сложению. 4)Умножение 2-х матриц: умножение А на В возможно тогда и только
тогда, когда число столбцов А равно числу строк В; произведением матрицы А
размера mxk на матрицу В размера kxn называется матрица С размера mxn, каждый элемент которой равен сумме произведений элементов i-ой строки
матрицы А на соответствующие элементы j-ого столбца матрицы В.
5)Возведение в степень: возводить в степень можно только квадратные
матрицы; целой положительной степенью квадратной матрицы Аm называется
произведение m-матриц, равных А. 6)Транспонирование: условий нет;
транспонирование-операция, в результате которой строчки и столбцы матрицы
меняются местами с сохранением порядка элемента, при этом элементы главной
диагонали остаются на своих местах.
8. Понятие обратной матрицы и алгоритм её вычисления.
Матрица А-1 называется обратной по отношению к квадратной матрице А, если
при умножении её на заданную как справа так и слева получатся единичная
матрица. Теорема (необходимое и достаточн.условие сущ-я обратн.матрицы):
обратная матрица А-1 сущ-т и единственна тогда и только тогда, когда
заданная матрица не вырожденная. Матрица называется вырожденной, если её
определитель равен 0, в противном случае она – не вырожденная. Алгоритм:
1)Определитель заданной матрицы. 2)Транспонирование. 3)Алгебраические
дополнения всех элементов транспонированной матрицы. 4) Присоед.матрица А(
(на месте каждого эл-та Ат его алгебраич.доп-я). 5) А-1= 1/(А (((. 6)
Проверка((А-1 (А=Е.
9. Ранг матрицы. Элементарные преобразования.
Рангом матрицы А называется наивысший порядок отличных от 0 миноров этой матрицы (rang A=r(A)(. Ранг матрицы не изменяется при проведении элементарных преобразований. Преобразования: 1)отбрасывание строки или столбца, состоящих из одних нулей; 2)умножение всех эл-ов к.-л. строки или столбца матрицы на одно и то же число, отличное от 0; 3)изменение порядка строк или столбцов матрицы; 4)прибавление к каждому эл-ту к.-л. строки или столбца эл-ов др. строки или столбца, умноженных на одно и то же число, не равное 0; 5) транспонирование матрицы.
10. Системы линейных алгебраических уравнений. Основные определения.
Матричная форма записи.
Линейным ур-ем относительно неизвестных x1,x2,…,xn называется выражение
вида a1x1+a2x2+…+anxn=b, где a1,a2,…,an и b- простые числа, причём
a1,a1,…,an называются коэффициентами при неизвестных, а b- свободным
коэффициентом. Последовательность чисел k1,k2,…,kn называется решением ур-
я, если при подстановке этих чисел в ур-е оно обращается в верное
равенство. Два линейных ур-я называются равносильными, если их решения
совпадают. Чтобы получить равносильное ур-е из заданного, необходимо
осуществить следующие преобразования: 1) перенос слагаемых из одной части
ур-я в другую; 2) поэлементное умножение всего ур-я на одно и то же число, отличное от ноля. Решить линейное ур-е –это значит найти все его решения
или установить, что их нет. Система уравнений называется совместной, если
она имеет хотя бы одно решение. Система ур-ий называется определённой, если
она имеет одно единственное решение, и неопределённой, если решений
множество. Неизвестное x1 называется разрешённым, если к.-н. ур-е системы
содержит неизвестное x1 с коэффициентом, равным 1, а во все др. ур-я
системы неизвестное x1 не входит. Если каждое ур-е системы содержит
разрешённое неизвестное, то такую систему называют разрешённой. Неизвестные
СЛУ, которые не входят в разрешённый набор, называются свободными.
Разрешённая СЛУ всегда совместна, она будет определённой, если число ур-ий
равно числу неизвестных; и неопределённой, если число неизвестных больше, чем ур-ий. Для того, чтобы определить совместна система или нет, не решая
её, можно воспользоваться теоремой Кронекера-Капелли. Матрица, эл-тами
которой являются коэффициенты при неизвестных системы, называется матрицей
системы. Матрица системы, дополненная столбцом свободных коэффициентов, называется расширенной матрицей.
11. Правило Крамера.
Правило Крамера: пусть (А-определитель матрицы системы, а (j-определитель матрицы, полученной из матрицы системы заменой j-ого столбца на столбец свободных коэффициентов; тогда, если (А(0, то система имеет единственное решение, определяемое по формуле ( Xj= (j/ (A.
12. Теорема Кронекера-Капелли.
Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы. Система ур-ий называется совместной, если она имеет хотя бы одно решение.
13. Решение систем линейных алгебраических ур-ий методом Гаусса.
Метод Гаусса: каждую СЛУ при помощи конечного числа преобразований можно
превратить в разрешённую системы ур-ий или в систему, содержащую
противоречивое ур-е. Противоречивым называется ур-е вида OX1+OX2+...+OXn=b.
Если каждое ур-е системы содержит разрешённое неизвестное, то такую систему
называют разрешённой. Неизвестное x1 называют разрешённым, если к.-н. ур-е
системы содержит неизвестное x1 с коэффициентом, равным 1, а во все другие
ур-я системы неизвестное x1 не входит.
Рекомендуем скачать другие рефераты по теме: доклад по биологии, реферат.
1 2 3 4 5 6 | Следующая страница реферата