Скалярная проекция гиперкомплексных чисел
Категория реферата: Рефераты по математике
Теги реферата: сочинение рассуждение, сочинение капитанская
Добавил(а) на сайт: Andronika.
Предыдущая страница реферата | 1 2 3 4 5 6 7
Таким образом, при задании преобразования числа x как умножения слева на число |a|=1 мы получаем ортогональное преобразование, сохраняющее модуль числа x и скалярную проекцию векторов ax и ay.
То же самое можно доказать и для умножения справа на число a, где |a|=1.
5. Выводы.
Нам удалось найти для гиперкомплексных алгебр аналог скалярного произведения, введенного в векторной алшебре. Его удалось дать в достаточно общей форме, распространимой на ассоциативные гиперкомплексные алгебры Кэли - Диксона. Полученная форма полностью соответствует четырем основным свойствам скалярного произведения. Проанализировав, в каком именно месте рассуждений мы отошли от классического варианта, несложно обнаружить, что мы нигде не потребовали и не использовали равенства:
Если бы мы потребовали его выполнения, то мы естественным образом сузили бы набор рассматриваемых гиперкомплексных алгебр. Точно так же, как это было сделано в теореме Гурвица: Любая нормированная алгебра с единицей изоморфна одной из четырех алгебр - действительных чисел, комплексных чисел, кватернионов или октав. Более того, равенство у него считается очевидным.
Автор надеется, что некоторая часть этой статьи может оказаться полезной и при работе с финслеровыми геометриями.
Москва, октябрь 2001.
Список литературы
1. И. Л. Кантор, А. С. Солодовников. Гиперкомплексные числа, М, Наука, 1973.
2. Е. А. Каратаев. Скалярно - пространственные повороты в кватернионах, http://karataev.nm.ru/sclvec/index.html
Скачали данный реферат: Степихов, Другов, Будзинский, Мохов, Savrasov, Umberg.
Последние просмотренные рефераты на тему: шпоры по гражданскому, реферат на тему закон, реферат экономическое развитие, доклад по биологии.
Предыдущая страница реферата | 1 2 3 4 5 6 7