ТЭС - расчет канала
Категория реферата: Рефераты по радиоэлектронике
Теги реферата: баллов рефераты, понятие культуры
Добавил(а) на сайт: Manefa.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
[pic], где а – некоторая постоянная. (3.7.)
Подставляя неравенство (3.6.) в (3.7.), замечаем, что максимум величины h2 обеспечивается при выполнении условия:
[pic] (3.8.)
из последнего выражения получим:
K(w)=aS(w), (K(w)+(S(w)+wt0=0
Откуда находим:
(K(w)+(S(w)+wt0=0
(K(w)=-(S(w)-wt0.
Таким образом, передаточная функция оптимального фильтра должна определяться выражением:
[pic] (3.9.), где * обозначает комплексно-сопряженную величину. Тогда отношение сигнал/шум в момент времени t0 будет равно:
[pic], где E – энергия сигнала на входе фильтра. Величина hm2 определяется только энергией сигнала и не зависит от его формы.
Пояснения к полученным результатам.
АЧХ оптимального фильтра отличается постоянным множителем от амплитудного спектра сигнала, поэтому оптимальный фильтр пропускает различные частотные составляющие сигнала неравномерно с тем большим ослаблением, чем меньше интенсивность этих составляющих, в результате полная мощность шума на выходе фильтра получается меньшей, чем при равномерной АЧХ.
Заметим, что член выражения wt0 для фазовой характеристики означает
сдвиг во времени на величину t0 всех частотных составляющих сигнала.
Приведенные равенства означают, что в момент времени t0 все спектральные
составляющие сигнала фильтра имеют одну и ту же начальную фазу. Оптимальный
фильтр обеспечивает компенсацию начальных фаз составляющих сигнала.
Складываясь в фазе, спектральные составляющие сигнала образуют в момент
времени t0 пиковый выброс выходного сигнала. На составляющие шума, имеющие
случайные начальные фазы, оптимальный фильтр таково влияния не оказывает.
Вследствие этих двух причин оптимальный фильтр обеспечивает максимум пикового напряжения сигнала к среднеквадратичному значению шума.
Так как частотные характеристики оптимального фильтра, обеспечивающего максимум отношения сигнал/шум, полностью определяются спектром (т.е. формой) сигнала, то говорят, что они согласованы с сигналом, а такой фильтр называют согласованным для данного сигнала. Следует отметить, что оптимальный фильтр для сигнала S(t) будет являться оптимальным и для всех сигналов той же формы, но отличающихся от него амплитудой, временным положением и начальной фазой заполнения (для радиоимпульсов).
Полученные выше результаты относятся к случаю приема сигналов с белым шумом. Рассматривая более общий случай, когда шум имеет неравномерную спектральную плотность Gn(w), можно показать, что передаточная функция оптимального фильтра должна определяться выражением
[pic] (3.10.)
Оптимальный фильтр в этом случае можно представить в виде последовательного соединения двух фильтров. Первый из них имеет амплитудно-частотную характеристику [pic], его назначение – “обелить” шум, который поступает на вход фильтра. Второй фильтр с передаточной характеристикой K2(jw) является оптимальным для искаженного сигнала (после первого фильтра), но уже при белом шуме.
Здесь интересно отметить следующее обстоятельство.Если квадрат амплитудно-частотного спектра сигнала совпадает по форме со спектральной плотностью шума, т.е. [pic], то АЧХ оптимального фильтра должна быть равномерной (K(w)=K=const).
Определим импульсную переходную функцию согласованного фильтра.
Импульсной переходной функцией называется отклик цепи на короткий импульс
(дельта-функция). Она связана с передаточной характеристикой преобразование
Фурье:
[pic] (3.11.)
Так как для согласованного фильтра [pic], то для g(t) получим
[pic] (3.12)
Таким образом, импульсная переходная функция согласованного фильтра для сигнала S(t) отличается от временной функции, описывающей этот сигнал, только постоянным множителем, смещением во времени на величину t0 и знаком аргумента t. Другими словами, импульсная переходная функция согласованного фильтра является зеркальным отражением временной функции сигнала, сдвинутым на величину t0.
Величина t0 выбирается из условия физической реализуемости фильтра, согласно которому отклик цепи не может опережать воздействие. Если на вход фильтра подается дельта-функция в момент времени t=0, то отклик (импульсная реакция) фильтра может появиться лишь при t>0. Только при выполнении этого условия может быть использована вся энергия сигнала для создания пикового выброса в момент времени t=t0. Обычно выбирают t0=T. Можно сделать вывод, что согласование сигналов возможно лишь для сигналов конечной длительности, т.е. импульсных сигналов.
Рекомендуем скачать другие рефераты по теме: решебник мордкович, шпори, реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата